danieleV9H commited on
Commit
0d9392f
1 Parent(s): 8ff8189

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - librispeech_asr
7
+ model-index:
8
+ - name: hubert-base-libri-clean-ft100h
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # hubert-base-libri-clean-ft100h
16
+
17
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the librispeech_asr dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1324
20
+ - Wer: 0.1597
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 16
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 1000
48
+ - num_epochs: 5
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | No log | 0.14 | 250 | 4.1508 | 1.0000 |
56
+ | 4.4345 | 0.28 | 500 | 3.8766 | 1.0000 |
57
+ | 4.4345 | 0.42 | 750 | 3.4376 | 1.0000 |
58
+ | 2.8475 | 0.56 | 1000 | 2.7380 | 1.0 |
59
+ | 2.8475 | 0.7 | 1250 | 0.8803 | 0.6766 |
60
+ | 1.1877 | 0.84 | 1500 | 0.5671 | 0.5102 |
61
+ | 1.1877 | 0.98 | 1750 | 0.4537 | 0.4388 |
62
+ | 0.5802 | 1.12 | 2000 | 0.3566 | 0.3740 |
63
+ | 0.5802 | 1.26 | 2250 | 0.2925 | 0.3209 |
64
+ | 0.4301 | 1.4 | 2500 | 0.2613 | 0.2952 |
65
+ | 0.4301 | 1.54 | 2750 | 0.2363 | 0.2715 |
66
+ | 0.3591 | 1.68 | 3000 | 0.2155 | 0.2552 |
67
+ | 0.3591 | 1.82 | 3250 | 0.2062 | 0.2418 |
68
+ | 0.3015 | 1.96 | 3500 | 0.1951 | 0.2308 |
69
+ | 0.3015 | 2.1 | 3750 | 0.1842 | 0.2207 |
70
+ | 0.2698 | 2.24 | 4000 | 0.1900 | 0.2112 |
71
+ | 0.2698 | 2.38 | 4250 | 0.1745 | 0.2048 |
72
+ | 0.2561 | 2.52 | 4500 | 0.1718 | 0.2040 |
73
+ | 0.2561 | 2.66 | 4750 | 0.1625 | 0.1939 |
74
+ | 0.2348 | 2.8 | 5000 | 0.1568 | 0.1867 |
75
+ | 0.2348 | 2.94 | 5250 | 0.1517 | 0.1855 |
76
+ | 0.2278 | 3.08 | 5500 | 0.1501 | 0.1807 |
77
+ | 0.2278 | 3.22 | 5750 | 0.1445 | 0.1772 |
78
+ | 0.2166 | 3.36 | 6000 | 0.1422 | 0.1752 |
79
+ | 0.2166 | 3.5 | 6250 | 0.1418 | 0.1741 |
80
+ | 0.2017 | 3.64 | 6500 | 0.1404 | 0.1695 |
81
+ | 0.2017 | 3.78 | 6750 | 0.1356 | 0.1674 |
82
+ | 0.1922 | 3.92 | 7000 | 0.1350 | 0.1688 |
83
+ | 0.1922 | 4.06 | 7250 | 0.1346 | 0.1638 |
84
+ | 0.1979 | 4.2 | 7500 | 0.1359 | 0.1638 |
85
+ | 0.1979 | 4.34 | 7750 | 0.1336 | 0.1612 |
86
+ | 0.1836 | 4.48 | 8000 | 0.1324 | 0.1613 |
87
+ | 0.1836 | 4.62 | 8250 | 0.1320 | 0.1606 |
88
+ | 0.1891 | 4.76 | 8500 | 0.1325 | 0.1598 |
89
+ | 0.1891 | 4.9 | 8750 | 0.1324 | 0.1597 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.17.0
95
+ - Pytorch 1.11.0+cu113
96
+ - Datasets 1.18.3
97
+ - Tokenizers 0.12.1