metadata
language: en
tags:
- text-classification
pipeline_tag: text-classification
widget:
- text: >-
GEPS Techno is the pioneer of hybridization of renewable energies at sea.
We imagine, design and commercialize innovative off-grid systems that aim
to generate power at sea, stabilize and collect data. The success of our
low power platforms WAVEPEAL enabled us to scale-up the device up to
WAVEGEM, the 150-kW capacity platform.
Environmental Impact (CODE CARBON DEFAULT)
Metric | Value |
---|---|
Duration (in seconds) | 83578.31908273697 |
Emissions (Co2eq in kg) | 0.0505744922911225 |
CPU power (W) | 42.5 |
GPU power (W) | [No GPU] |
RAM power (W) | 3.75 |
CPU energy (kWh) | 0.9866859391252196 |
GPU energy (kWh) | [No GPU] |
RAM energy (kWh) | 0.0870596775521835 |
Consumed energy (kWh) | 1.0737456166774062 |
Country name | Switzerland |
Cloud provider | nan |
Cloud region | nan |
CPU count | 2 |
CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz |
GPU count | nan |
GPU model | nan |
Environmental Impact (for one core)
Metric | Value |
---|---|
CPU energy (kWh) | 0.16088826423426866 |
Emissions (Co2eq in kg) | 0.03273484164073864 |
Note
19 juin 2024
My Config
Config | Value |
---|---|
checkpoint | albert-base-v2 |
model_name | ft_16_8e6_base_x2 |
sequence_length | 400 |
num_epoch | 6 |
learning_rate | 8e-06 |
batch_size | 16 |
weight_decay | 0.0 |
warm_up_prop | 0.0 |
drop_out_prob | 0.1 |
packing_length | 100 |
train_test_split | 0.2 |
num_steps | 29328 |
Training and Testing steps
Epoch | Train Loss | Test Loss | F-beta Score |
---|---|---|---|
0 | 0.000000 | 0.745655 | 0.196979 |
1 | 0.314989 | 0.244013 | 0.925760 |
2 | 0.183865 | 0.206055 | 0.935855 |
3 | 0.130925 | 0.237351 | 0.928594 |
4 | 0.079589 | 0.247564 | 0.912419 |
5 | 0.046723 | 0.313798 | 0.906846 |
6 | 0.034248 | 0.388957 | 0.892197 |