metadata
language: en
tags:
- text-classification
pipeline_tag: text-classification
widget:
- text: >-
GEPS Techno is the pioneer of hybridization of renewable energies at sea.
We imagine, design and commercialize innovative off-grid systems that aim
to generate power at sea, stabilize and collect data. The success of our
low power platforms WAVEPEAL enabled us to scale-up the device up to
WAVEGEM, the 150-kW capacity platform.
Environmental Impact (CODE CARBON DEFAULT)
Metric | Value |
---|---|
Duration (in seconds) | 85094.08409762383 |
Emissions (Co2eq in kg) | 0.0514916926317512 |
CPU power (W) | 42.5 |
GPU power (W) | [No GPU] |
RAM power (W) | 3.75 |
CPU energy (kWh) | 1.0045801025397267 |
GPU energy (kWh) | [No GPU] |
RAM energy (kWh) | 0.0886385686509311 |
Consumed energy (kWh) | 1.0932186711906604 |
Country name | Switzerland |
Cloud provider | nan |
Cloud region | nan |
CPU count | 2 |
CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz |
GPU count | nan |
GPU model | nan |
Environmental Impact (for one core)
Metric | Value |
---|---|
CPU energy (kWh) | 0.16380611188792585 |
Emissions (Co2eq in kg) | 0.033328516271569325 |
Note
19 juin 2024
My Config
Config | Value |
---|---|
checkpoint | albert-base-v2 |
model_name | ft_16_2e6_base_x4 |
sequence_length | 400 |
num_epoch | 6 |
learning_rate | 2e-06 |
batch_size | 16 |
weight_decay | 0.0 |
warm_up_prop | 0.0 |
drop_out_prob | 0.1 |
packing_length | 100 |
train_test_split | 0.2 |
num_steps | 29328 |
Training and Testing steps
Epoch | Train Loss | Test Loss | F-beta Score |
---|---|---|---|
0 | 0.000000 | 0.711902 | 0.208783 |
1 | 0.384097 | 0.310010 | 0.859353 |
2 | 0.246249 | 0.235737 | 0.899697 |
3 | 0.200398 | 0.227796 | 0.913603 |
4 | 0.170546 | 0.237140 | 0.900975 |
5 | 0.141888 | 0.229934 | 0.917205 |
6 | 0.111723 | 0.265680 | 0.903787 |