metadata
language: en
tags:
- text-classification
pipeline_tag: text-classification
widget:
- text: >-
GEPS Techno is the pioneer of hybridization of renewable energies at sea.
We imagine, design and commercialize innovative off-grid systems that aim
to generate power at sea, stabilize and collect data. The success of our
low power platforms WAVEPEAL enabled us to scale-up the device up to
WAVEGEM, the 150-kW capacity platform.
Environmental Impact (CODE CARBON DEFAULT)
Metric | Value |
---|---|
Duration (in seconds) | 83796.06663370132 |
Emissions (Co2eq in kg) | 0.0507062628268632 |
CPU power (W) | 42.5 |
GPU power (W) | [No GPU] |
RAM power (W) | 3.75 |
CPU energy (kWh) | 0.9892566583550656 |
GPU energy (kWh) | [No GPU] |
RAM energy (kWh) | 0.0872865748430289 |
Consumed energy (kWh) | 1.0765432331980909 |
Country name | Switzerland |
Cloud provider | nan |
Cloud region | nan |
CPU count | 2 |
CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz |
GPU count | nan |
GPU model | nan |
Environmental Impact (for one core)
Metric | Value |
---|---|
CPU energy (kWh) | 0.16130742826987504 |
Emissions (Co2eq in kg) | 0.03282012609819969 |
Note
12 juillet 2024
My Config
Config | Value |
---|---|
checkpoint | damgomz/fp_bs32_lr1e4_x4 |
model_name | ft_16_17e6_x4 |
sequence_length | 400 |
num_epoch | 6 |
learning_rate | 1.7e-05 |
batch_size | 16 |
weight_decay | 0.0 |
warm_up_prop | 0.0 |
drop_out_prob | 0.1 |
packing_length | 100 |
train_test_split | 0.2 |
num_steps | 29328 |
Training and Testing steps
Epoch | Train Loss | Test Loss | F-beta Score |
---|---|---|---|
0 | 0.000000 | 0.699915 | 0.276916 |
1 | 0.270960 | 0.198921 | 0.925326 |
2 | 0.155599 | 0.216543 | 0.934429 |
3 | 0.091423 | 0.287910 | 0.909052 |
4 | 0.049362 | 0.336393 | 0.914625 |
5 | 0.030199 | 0.355472 | 0.929866 |
6 | 0.018390 | 0.381346 | 0.929333 |