|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from peft import LoraConfig |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
AutoTokenizer, |
|
TrainingArguments, |
|
) |
|
from peft import prepare_model_for_kbit_training, get_peft_model |
|
from transformers import GPTQConfig |
|
|
|
from trl import SFTTrainer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ScriptArguments: |
|
""" |
|
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train. |
|
""" |
|
|
|
local_rank: Optional[int] = field(default=-1, metadata={"help": "Used for multi-gpu"}) |
|
|
|
per_device_train_batch_size: Optional[int] = field(default=4) |
|
per_device_eval_batch_size: Optional[int] = field(default=1) |
|
gradient_accumulation_steps: Optional[int] = field(default=4) |
|
learning_rate: Optional[float] = field(default=2e-4) |
|
max_grad_norm: Optional[float] = field(default=0.3) |
|
weight_decay: Optional[int] = field(default=0.001) |
|
lora_alpha: Optional[int] = field(default=16) |
|
lora_dropout: Optional[float] = field(default=0.1) |
|
lora_r: Optional[int] = field(default=64) |
|
max_seq_length: Optional[int] = field(default=512) |
|
model_name: Optional[str] = field( |
|
default="dahara1/weblab-10b-instruction-sft-GPTQ/finetune_sample", |
|
metadata={ |
|
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc." |
|
} |
|
) |
|
dataset_name: Optional[str] = field( |
|
default="timdettmers/openassistant-guanaco", |
|
metadata={"help": "The preference dataset to use."}, |
|
) |
|
num_train_epochs: Optional[int] = field( |
|
default=1, |
|
metadata={"help": "The number of training epochs for the reward model."}, |
|
) |
|
fp16: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables fp16 training."}, |
|
) |
|
bf16: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Enables bf16 training."}, |
|
) |
|
packing: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Use packing dataset creating."}, |
|
) |
|
gradient_checkpointing: Optional[bool] = field( |
|
default=True, |
|
metadata={"help": "Enables gradient checkpointing."}, |
|
) |
|
optim: Optional[str] = field( |
|
default="adamw_hf", |
|
metadata={"help": "The optimizer to use."}, |
|
) |
|
lr_scheduler_type: str = field( |
|
default="constant", |
|
metadata={"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"}, |
|
) |
|
max_steps: int = field(default=10000, metadata={"help": "How many optimizer update steps to take"}) |
|
warmup_ratio: float = field(default=0.03, metadata={"help": "Fraction of steps to do a warmup for"}) |
|
group_by_length: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "Group sequences into batches with same length. Saves memory and speeds up training considerably." |
|
}, |
|
) |
|
save_steps: int = field(default=10, metadata={"help": "Save checkpoint every X updates steps."}) |
|
logging_steps: int = field(default=10, metadata={"help": "Log every X updates steps."}) |
|
merge_and_push: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Merge and push weights after training"}, |
|
) |
|
output_dir: str = field( |
|
default="./results", |
|
metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, |
|
) |
|
|
|
|
|
parser = HfArgumentParser(ScriptArguments) |
|
script_args = parser.parse_args_into_dataclasses()[0] |
|
|
|
|
|
def create_and_prepare_model(args): |
|
major, _ = torch.cuda.get_device_capability() |
|
if major >= 8: |
|
print("=" * 80) |
|
print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16") |
|
print("=" * 80) |
|
|
|
|
|
|
|
|
|
device_map = "auto" |
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model_name, |
|
device_map=device_map, |
|
use_safetensors=True, |
|
quantization_config= GPTQConfig(bits=4, disable_exllama=True) |
|
) |
|
|
|
|
|
model.config.pretraining_tp = 1 |
|
|
|
peft_config = LoraConfig( |
|
lora_alpha=script_args.lora_alpha, |
|
lora_dropout=script_args.lora_dropout, |
|
r=script_args.lora_r, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
return model, peft_config, tokenizer |
|
|
|
|
|
training_arguments = TrainingArguments( |
|
output_dir=script_args.output_dir, |
|
per_device_train_batch_size=script_args.per_device_train_batch_size, |
|
gradient_accumulation_steps=script_args.gradient_accumulation_steps, |
|
optim=script_args.optim, |
|
save_steps=script_args.save_steps, |
|
logging_steps=script_args.logging_steps, |
|
learning_rate=script_args.learning_rate, |
|
fp16=script_args.fp16, |
|
bf16=script_args.bf16, |
|
max_grad_norm=script_args.max_grad_norm, |
|
max_steps=script_args.max_steps, |
|
warmup_ratio=script_args.warmup_ratio, |
|
group_by_length=script_args.group_by_length, |
|
lr_scheduler_type=script_args.lr_scheduler_type, |
|
) |
|
|
|
model, peft_config, tokenizer = create_and_prepare_model(script_args) |
|
model = prepare_model_for_kbit_training(model) |
|
model = get_peft_model(model, peft_config) |
|
model.config.use_cache = False |
|
dataset = load_dataset("csv", data_files="jawiki3.csv", split='train') |
|
|
|
|
|
|
|
tokenizer.padding_side = "right" |
|
trainer = SFTTrainer( |
|
model=model, |
|
train_dataset=dataset, |
|
dataset_text_field="QuestionAnswer", |
|
max_seq_length=script_args.max_seq_length, |
|
tokenizer=tokenizer, |
|
args=training_arguments, |
|
packing=script_args.packing, |
|
) |
|
|
|
trainer.train() |
|
|
|
if script_args.merge_and_push: |
|
output_dir = os.path.join(script_args.output_dir, "final_checkpoints") |
|
trainer.model.save_pretrained(output_dir) |
|
|
|
|
|
del model |
|
torch.cuda.empty_cache() |
|
|