d071696 commited on
Commit
7cd87e8
·
verified ·
1 Parent(s): 108094b

Model save

Browse files
README.md CHANGED
@@ -1,17 +1,27 @@
1
  ---
2
- license: apache-2.0
3
  base_model: d071696/vit-finetune-scrap
4
  tags:
5
- - image-to-text
6
- - image-classification
7
  - generated_from_trainer
8
  datasets:
9
- - imagefolder
10
  metrics:
11
  - accuracy
12
  model-index:
13
  - name: vit-finetune-scrap
14
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -19,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # vit-finetune-scrap
21
 
22
- This model is a fine-tuned version of [d071696/vit-finetune-scrap](https://huggingface.co/d071696/vit-finetune-scrap) on the d071696/scraps1 dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.9895
25
- - Accuracy: 1.0
26
 
27
  ## Model description
28
 
@@ -51,6 +61,9 @@ The following hyperparameters were used during training:
51
 
52
  ### Training results
53
 
 
 
 
54
 
55
 
56
  ### Framework versions
 
1
  ---
 
2
  base_model: d071696/vit-finetune-scrap
3
  tags:
 
 
4
  - generated_from_trainer
5
  datasets:
6
+ - arrow
7
  metrics:
8
  - accuracy
9
  model-index:
10
  - name: vit-finetune-scrap
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: arrow
17
+ type: arrow
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9694238815577728
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  # vit-finetune-scrap
31
 
32
+ This model is a fine-tuned version of [d071696/vit-finetune-scrap](https://huggingface.co/d071696/vit-finetune-scrap) on the arrow dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.1116
35
+ - Accuracy: 0.9694
36
 
37
  ## Model description
38
 
 
61
 
62
  ### Training results
63
 
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.1326 | 2.57 | 1000 | 0.1116 | 0.9694 |
67
 
68
 
69
  ### Framework versions
runs/Mar29_16-45-17_X5C922065N/events.out.tfevents.1711727303.X5C922065N.53009.3 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ef4bfa84ad4b70c5dff7107e3c01173c723af5870d452ef130689eefe0fbf546
3
- size 26498
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:567dc834644c264344ae236cac0f78981a307633bfcdf4d137f92001018a609c
3
+ size 38457