d-matrix
commited on
Commit
•
93cadd1
1
Parent(s):
55072b7
Create README.md
Browse filesdraft of model card
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- wikitext
|
5 |
+
- ptb_text_only
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- perplexity
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
model-index:
|
12 |
+
- name: distilgpt2
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: text-generation
|
16 |
+
dataset:
|
17 |
+
name: penn_treebank
|
18 |
+
type: ptb_text_only
|
19 |
+
metrics:
|
20 |
+
- name: perlexity@BASELINE
|
21 |
+
type: dmx-perlexity
|
22 |
+
value: 63.45857238769531
|
23 |
+
- name: perlexity@FALLBACK
|
24 |
+
type: dmx-perlexity
|
25 |
+
value: 64.36720275878906
|
26 |
+
- task:
|
27 |
+
type: text-generation
|
28 |
+
dataset:
|
29 |
+
name: wikitext2
|
30 |
+
type: wikitext-2-raw-v1
|
31 |
+
metrics:
|
32 |
+
- name: perlexity@BASELINE
|
33 |
+
type: dmx-perlexity
|
34 |
+
value: 46.05925369262695
|
35 |
+
- name: perlexity@FALLBACK
|
36 |
+
type: dmx-perlexity
|
37 |
+
value: 46.570838928222656
|
38 |
+
---
|
39 |
+
This is a quantized version of [DistilGPT2](https://huggingface.co/distilbert/distilgpt2). We provide the following two quantization configurations:
|
40 |
+
|
41 |
+
BASELINE: Everything in original format, equivalent to original model.
|
42 |
+
|
43 |
+
FALLBACK: Quantized Linear and Conv1D layers to BFP16. Added approximation functions for Layer Norm, GELU and Softmax.
|
44 |
+
|
45 |
+
### Usage Example
|
46 |
+
|
47 |
+
Prerequisites:
|
48 |
+
- Install dmx-mltools: "pip install dmx-mltools"
|
49 |
+
- clone this repo. "cd" to the cloned repo.
|
50 |
+
```python
|
51 |
+
>>> import os
|
52 |
+
>>> import torch
|
53 |
+
>>> from mltools import dmx
|
54 |
+
>>> from transformers import pipeline,AutoModelForCausalLM
|
55 |
+
>>> import evaluate
|
56 |
+
>>> from datasets import load_dataset
|
57 |
+
|
58 |
+
# Get model
|
59 |
+
>>> my_hf_token = os.environ.get("Dmatrix_HF_Token")
|
60 |
+
>>> device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
61 |
+
|
62 |
+
>>> pipe = pipeline(
|
63 |
+
>>> "text-generation",
|
64 |
+
>>> model="d-matrix/distilgpt2",
|
65 |
+
>>> device=device,
|
66 |
+
>>> use_auth_token=my_hf_token,
|
67 |
+
>>> )
|
68 |
+
>>> pipe.model = dmx.Model(pipe.model,monkey_patched=False,hf=True,input_names=["input_ids", "labels"])
|
69 |
+
|
70 |
+
# Configure quantization formats
|
71 |
+
>>> pipe.model.transform('FALLBACK.yaml')
|
72 |
+
|
73 |
+
# Evaluate
|
74 |
+
>>> perplexity = evaluate.load("d-matrix/dmx_perplexity", module_type="metric")
|
75 |
+
>>> input_texts = load_dataset("ptb_text_only", "penn_treebank", split="test")["sentence"]
|
76 |
+
>>> pipe.model.eval()
|
77 |
+
>>> results = perplexity.compute(model=pipe.model.body,references=input_texts)
|
78 |
+
>>> print(results)
|
79 |
+
{'loss': 4.164604187011719, 'perplexity': 64.36720275878906}
|
80 |
+
```
|