|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Subsampling layer definition.""" |
|
|
|
from typing import Tuple, Union |
|
|
|
import torch |
|
|
|
|
|
class BaseSubsampling(torch.nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.right_context = 0 |
|
self.subsampling_rate = 1 |
|
|
|
def position_encoding(self, offset: Union[int, torch.Tensor], |
|
size: int) -> torch.Tensor: |
|
return self.pos_enc.position_encoding(offset, size) |
|
|
|
|
|
class EmbedinigNoSubsampling(BaseSubsampling): |
|
"""Embedding input without subsampling |
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
super().__init__() |
|
self.embed = torch.nn.Embedding(idim, odim) |
|
self.pos_enc = pos_enc_class |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Input x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: linear input tensor (#batch, time', odim), |
|
where time' = time . |
|
torch.Tensor: linear input mask (#batch, 1, time'), |
|
where time' = time . |
|
|
|
""" |
|
x = self.embed(x) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask |
|
|
|
|
|
class LinearNoSubsampling(BaseSubsampling): |
|
"""Linear transform the input without subsampling |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an linear object.""" |
|
super().__init__() |
|
self.out = torch.nn.Sequential( |
|
torch.nn.Linear(idim, odim), |
|
torch.nn.LayerNorm(odim, eps=1e-5), |
|
torch.nn.Dropout(dropout_rate), |
|
) |
|
self.pos_enc = pos_enc_class |
|
self.right_context = 0 |
|
self.subsampling_rate = 1 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Input x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: linear input tensor (#batch, time', odim), |
|
where time' = time . |
|
torch.Tensor: linear input mask (#batch, 1, time'), |
|
where time' = time . |
|
|
|
""" |
|
x = self.out(x) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask |
|
|
|
|
|
class Conv1dSubsampling2(BaseSubsampling): |
|
"""Convolutional 1D subsampling (to 1/2 length). |
|
It is designed for Whisper, ref: |
|
https://github.com/openai/whisper/blob/main/whisper/model.py |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an Conv1dSubsampling2 object.""" |
|
super().__init__() |
|
self.conv = torch.nn.Sequential( |
|
torch.nn.Conv1d(idim, odim, kernel_size=3, padding=1), |
|
torch.nn.GELU(), |
|
torch.nn.Conv1d(odim, odim, kernel_size=3, stride=2, padding=1), |
|
torch.nn.GELU(), |
|
) |
|
self.pos_enc = pos_enc_class |
|
|
|
|
|
self.subsampling_rate = 2 |
|
|
|
self.right_context = 4 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Subsample x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: Subsampled tensor (#batch, time', odim), |
|
where time' = time // 2. |
|
torch.Tensor: Subsampled mask (#batch, 1, time'), |
|
where time' = time // 2. |
|
torch.Tensor: positional encoding |
|
|
|
""" |
|
time = x.size(1) |
|
x = x.transpose(1, 2) |
|
x = self.conv(x) |
|
x = x.transpose(1, 2) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask[:, :, (time + 1) % 2::2] |
|
|
|
|
|
class Conv2dSubsampling4(BaseSubsampling): |
|
"""Convolutional 2D subsampling (to 1/4 length). |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an Conv2dSubsampling4 object.""" |
|
super().__init__() |
|
self.conv = torch.nn.Sequential( |
|
torch.nn.Conv2d(1, odim, 3, 2), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv2d(odim, odim, 3, 2), |
|
torch.nn.ReLU(), |
|
) |
|
self.out = torch.nn.Sequential( |
|
torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim)) |
|
self.pos_enc = pos_enc_class |
|
|
|
|
|
self.subsampling_rate = 4 |
|
|
|
self.right_context = 6 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Subsample x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: Subsampled tensor (#batch, time', odim), |
|
where time' = time // 4. |
|
torch.Tensor: Subsampled mask (#batch, 1, time'), |
|
where time' = time // 4. |
|
torch.Tensor: positional encoding |
|
|
|
""" |
|
x = x.unsqueeze(1) |
|
x = self.conv(x) |
|
b, c, t, f = x.size() |
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2] |
|
|
|
|
|
class Conv2dSubsampling6(BaseSubsampling): |
|
"""Convolutional 2D subsampling (to 1/6 length). |
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
pos_enc (torch.nn.Module): Custom position encoding layer. |
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an Conv2dSubsampling6 object.""" |
|
super().__init__() |
|
self.conv = torch.nn.Sequential( |
|
torch.nn.Conv2d(1, odim, 3, 2), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv2d(odim, odim, 5, 3), |
|
torch.nn.ReLU(), |
|
) |
|
self.linear = torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), |
|
odim) |
|
self.pos_enc = pos_enc_class |
|
|
|
self.subsampling_rate = 6 |
|
self.right_context = 10 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Subsample x. |
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: Subsampled tensor (#batch, time', odim), |
|
where time' = time // 6. |
|
torch.Tensor: Subsampled mask (#batch, 1, time'), |
|
where time' = time // 6. |
|
torch.Tensor: positional encoding |
|
""" |
|
x = x.unsqueeze(1) |
|
x = self.conv(x) |
|
b, c, t, f = x.size() |
|
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f)) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask[:, :, 2::2][:, :, 4::3] |
|
|
|
|
|
class Conv2dSubsampling8(BaseSubsampling): |
|
"""Convolutional 2D subsampling (to 1/8 length). |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an Conv2dSubsampling8 object.""" |
|
super().__init__() |
|
self.conv = torch.nn.Sequential( |
|
torch.nn.Conv2d(1, odim, 3, 2), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv2d(odim, odim, 3, 2), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv2d(odim, odim, 3, 2), |
|
torch.nn.ReLU(), |
|
) |
|
self.linear = torch.nn.Linear( |
|
odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim) |
|
self.pos_enc = pos_enc_class |
|
self.subsampling_rate = 8 |
|
|
|
self.right_context = 14 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Subsample x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: Subsampled tensor (#batch, time', odim), |
|
where time' = time // 8. |
|
torch.Tensor: Subsampled mask (#batch, 1, time'), |
|
where time' = time // 8. |
|
torch.Tensor: positional encoding |
|
""" |
|
x = x.unsqueeze(1) |
|
x = self.conv(x) |
|
b, c, t, f = x.size() |
|
x = self.linear(x.transpose(1, 2).contiguous().view(b, t, c * f)) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask[:, :, 2::2][:, :, 2::2][:, :, 2::2] |
|
|
|
|
|
class LegacyLinearNoSubsampling(BaseSubsampling): |
|
"""Linear transform the input without subsampling |
|
|
|
Args: |
|
idim (int): Input dimension. |
|
odim (int): Output dimension. |
|
dropout_rate (float): Dropout rate. |
|
|
|
""" |
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
pos_enc_class: torch.nn.Module): |
|
"""Construct an linear object.""" |
|
super().__init__() |
|
self.out = torch.nn.Sequential( |
|
torch.nn.Linear(idim, odim), |
|
torch.nn.LayerNorm(odim, eps=1e-5), |
|
torch.nn.Dropout(dropout_rate), |
|
torch.nn.ReLU(), |
|
) |
|
self.pos_enc = pos_enc_class |
|
self.right_context = 0 |
|
self.subsampling_rate = 1 |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
x_mask: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Input x. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
Returns: |
|
torch.Tensor: linear input tensor (#batch, time', odim), |
|
where time' = time . |
|
torch.Tensor: linear input mask (#batch, 1, time'), |
|
where time' = time . |
|
|
|
""" |
|
x = self.out(x) |
|
x, pos_emb = self.pos_enc(x, offset) |
|
return x, pos_emb, x_mask |
|
|