Upload model to Hugging Face
Browse files- BC-harcodemap-punish-stagnant-long.zip +2 -2
- BC-harcodemap-punish-stagnant-long/data +17 -17
- BC-harcodemap-punish-stagnant-long/policy.optimizer.pth +1 -1
- BC-harcodemap-punish-stagnant-long/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
BC-harcodemap-punish-stagnant-long.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4788b778c071be5329a01179ccec2104f38174730d1b7b31dbcea98abd8936d
|
3 |
+
size 44018
|
BC-harcodemap-punish-stagnant-long/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,11 +57,11 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4eb18ed1b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4eb18ed240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4eb18ed2d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4eb18ed360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4eb18ed3f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4eb18ed480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4eb18ed510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4eb18ed5a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4eb18ed630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4eb18ed6c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4eb18ed750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4eb18ed7e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f4eb18de400>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681935196268149594,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPwI70J0zJu/Z8UlQpeaGUKLaFVCAADIQgAAyEIAAMhCAADIQgAAyEIS8QdDQ9q6v5tnskFtL51BFdDPQQAAyEIAAMhCAADIQgAAyEIAAMhC5UUwQ98z578AAMhCVU26Qt21s0IAAMhCAADIQpUhokIAAMhCAADIQsjLaUNL2yS/AADIQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2T7kLSfBlMCUhpRSlIwBbJRLDYwBdJRHQIrjKQzUI9l1fZQoaAZoCWgPQwi63GCoo9CHwJSGlFKUaBVLVWgWR0CK5ZNrTH81dX2UKGgGaAloD0MIdy6M9CKqhMCUhpRSlGgVSyRoFkdAiuaKF7D2rXV9lChoBmgJaA9DCB+CqtFLuZTAlIaUUpRoFUtjaBZHQIrm59PUKAt1fZQoaAZoCWgPQwj7QPLOMbCUwJSGlFKUaBVLE2gWR0CK56CA+Y+jdX2UKGgGaAloD0MIOQt72oFah8CUhpRSlGgVSzRoFkdAiulAwXZXdXV9lChoBmgJaA9DCKvLKQGBApbAlIaUUpRoFUsfaBZHQIrqRpWV/tp1fZQoaAZoCWgPQwjL1Y9NMo2HwJSGlFKUaBVLNmgWR0CK7bq8DjiodX2UKGgGaAloD0MI46YGmq8DhcCUhpRSlGgVS0hoFkdAivKgG8mKInV9lChoBmgJaA9DCIwtBDnYz5TAlIaUUpRoFUsPaBZHQIr0fx4IKMN1fZQoaAZoCWgPQwiLNVzkTrGawJSGlFKUaBVLd2gWR0CK9rp/PPcBdX2UKGgGaAloD0MIQS0GD9ONlMCUhpRSlGgVSxdoFkdAivdUpd8iOnV9lChoBmgJaA9DCMu+K4J/g5bAlIaUUpRoFUuAaBZHQIr6fEuQIUt1fZQoaAZoCWgPQwioiqn001SZwJSGlFKUaBVLf2gWR0CK/bB0p3HJdX2UKGgGaAloD0MICDnv/+NBlcCUhpRSlGgVSxRoFkdAiwAllsguAnV9lChoBmgJaA9DCGRbBpxFUpnAlIaUUpRoFUtOaBZHQIsA/YcvM8p1fZQoaAZoCWgPQwhtqu6RrTaHwJSGlFKUaBVLPGgWR0CLAaFV1fVqdX2UKGgGaAloD0MI0SLb+b7elcCUhpRSlGgVSxVoFkdAiwODJEH+qHV9lChoBmgJaA9DCPjii/b4lZTAlIaUUpRoFUsVaBZHQIsFRY3eenR1fZQoaAZoCWgPQwic+GpH8ZSUwJSGlFKUaBVLiWgWR0CLBZ15jYqYdX2UKGgGaAloD0MICCKLNBEwksCUhpRSlGgVS3ZoFkdAiwuFDfFaS3V9lChoBmgJaA9DCDVDqiheNo7AlIaUUpRoFUtMaBZHQIsMQXuVopR1fZQoaAZoCWgPQwg7Oq5GlueUwJSGlFKUaBVLjGgWR0CLDOuLaVUudX2UKGgGaAloD0MIgSBAhp4IlsCUhpRSlGgVSxRoFkdAiw3P9UCJXXV9lChoBmgJaA9DCMfVyK4U+JvAlIaUUpRoFUuQaBZHQIsSxggHNX51fZQoaAZoCWgPQwhIisiwOtmSwJSGlFKUaBVLYGgWR0CLE+3Q2MsIdX2UKGgGaAloD0MIibfOv33licCUhpRSlGgVS0poFkdAixQ2dNFjNXV9lChoBmgJaA9DCOhsAaH105XAlIaUUpRoFUsaaBZHQIsUsLQXyiF1fZQoaAZoCWgPQwgf9GxWPRiWwJSGlFKUaBVLJ2gWR0CLFvx7zCk5dX2UKGgGaAloD0MIWTUIcyuEm8CUhpRSlGgVS4toFkdAixhv4ubqhXV9lChoBmgJaA9DCLgGtkpQq4zAlIaUUpRoFUtMaBZHQIsaDF6zE751fZQoaAZoCWgPQwgROBJoEPmZwJSGlFKUaBVLTGgWR0CLHuMLncL0dX2UKGgGaAloD0MI/BnerJF1mcCUhpRSlGgVS3FoFkdAiyC1zp5eJHV9lChoBmgJaA9DCOq0boPaVpzAlIaUUpRoFUufaBZHQIsiD4DcM3J1fZQoaAZoCWgPQwgZ5C7C5LCUwJSGlFKUaBVLGmgWR0CLIq4YrJ8wdX2UKGgGaAloD0MIEOZ2L9dSh8CUhpRSlGgVSzJoFkdAiyMX7Lt/nXV9lChoBmgJaA9DCEdxjjra/pTAlIaUUpRoFUsTaBZHQIsjZJul41R1fZQoaAZoCWgPQwhxrmGGhteawJSGlFKUaBVLdWgWR0CLJAGvfTCtdX2UKGgGaAloD0MIyeTUzvCvlMCUhpRSlGgVSx5oFkdAiySlMZgogHV9lChoBmgJaA9DCDy/KEHfbpXAlIaUUpRoFUsUaBZHQIskqIUJv5x1fZQoaAZoCWgPQwgPJzCdVv2UwJSGlFKUaBVLGmgWR0CLJMvmHP/rdX2UKGgGaAloD0MIn7DEA9oklcCUhpRSlGgVSyFoFkdAiyfShBZ6lnV9lChoBmgJaA9DCP5EZcOaRovAlIaUUpRoFUtQaBZHQIssGNzbN8p1fZQoaAZoCWgPQwiNDHIXMROcwJSGlFKUaBVLh2gWR0CLMEM+/xlQdX2UKGgGaAloD0MI14hgHOzuksCUhpRSlGgVS4RoFkdAizEKFAVwgnV9lChoBmgJaA9DCEcf8wGhHpvAlIaUUpRoFUtiaBZHQIsxITqSowV1fZQoaAZoCWgPQwhmiGNdHHaVwJSGlFKUaBVLEmgWR0CLMqGs3hn8dX2UKGgGaAloD0MIo4/5gEBOmcCUhpRSlGgVS2NoFkdAizVHOKO1fHV9lChoBmgJaA9DCO9zfLSoxpXAlIaUUpRoFUsPaBZHQIs2k4WDYiB1fZQoaAZoCWgPQwhDxqNU4lGOwJSGlFKUaBVLSGgWR0CLN4RxtHhCdX2UKGgGaAloD0MIj/zBwKOrlMCUhpRSlGgVS3hoFkdAizsLNwBHTnV9lChoBmgJaA9DCC++aI93E4bAlIaUUpRoFUs4aBZHQIs7dhkRSP51fZQoaAZoCWgPQwhtWb4u80uVwJSGlFKUaBVLE2gWR0CLPJ00WM0hdX2UKGgGaAloD0MIByeiXysflcCUhpRSlGgVSxhoFkdAiz2cgIQe3nV9lChoBmgJaA9DCCycpPmDiJTAlIaUUpRoFUsRaBZHQIs+MeGO+7F1fZQoaAZoCWgPQwhHcvkPSWWawJSGlFKUaBVLaGgWR0CLQO9cry2AdX2UKGgGaAloD0MIKxIT1GDEm8CUhpRSlGgVS6FoFkdAi0FFz2exwHV9lChoBmgJaA9DCILHt3cdGpXAlIaUUpRoFUsTaBZHQItC4rMC9yt1fZQoaAZoCWgPQwicNuM01C6bwJSGlFKUaBVLc2gWR0CLSWfwI+nqdX2UKGgGaAloD0MImfT3Urg+m8CUhpRSlGgVS31oFkdAi0rrZBcAznV9lChoBmgJaA9DCKX3ja/d7ZTAlIaUUpRoFUsQaBZHQItMH863iJh1fZQoaAZoCWgPQwhMw/AR8QmGwJSGlFKUaBVLMWgWR0CLTUh9srNGdX2UKGgGaAloD0MI8l61MgGUlcCUhpRSlGgVS4ZoFkdAi04pBgNPQHV9lChoBmgJaA9DCEkRGVYBYJbAlIaUUpRoFUuGaBZHQItPc3S8an91fZQoaAZoCWgPQwiPcFrwUjaVwJSGlFKUaBVLEWgWR0CLT6kBS1mbdX2UKGgGaAloD0MIi/z6IZaphcCUhpRSlGgVS0NoFkdAi1H4y44IbHV9lChoBmgJaA9DCKLQsu5f6JTAlIaUUpRoFUsSaBZHQItTqEBbOeJ1fZQoaAZoCWgPQwi6awn54FGawJSGlFKUaBVLV2gWR0CLVX9Ujs2OdX2UKGgGaAloD0MIn+bkRSbchcCUhpRSlGgVS0toFkdAi1asU7CBPXV9lChoBmgJaA9DCFMDzefcRI7AlIaUUpRoFUtQaBZHQIta5sXSBsh1fZQoaAZoCWgPQwg8vr1rUCOHwJSGlFKUaBVLO2gWR0CLW5GjsUqQdX2UKGgGaAloD0MIZYnOMqulm8CUhpRSlGgVS5ZoFkdAi12BAOavzXV9lChoBmgJaA9DCLe1hedVXZvAlIaUUpRoFUt7aBZHQItg2GATZg51fZQoaAZoCWgPQwg5tMh2vnWOwJSGlFKUaBVLYmgWR0CLZebVjI7vdX2UKGgGaAloD0MIq1yo/MuXi8CUhpRSlGgVS1poFkdAi2b35N47inV9lChoBmgJaA9DCKKyYU1lO5bAlIaUUpRoFUuaaBZHQItrBD/lyR11fZQoaAZoCWgPQwhZF7fRgBqGwJSGlFKUaBVLM2gWR0CLa0gSvkimdX2UKGgGaAloD0MIkJ4ih7gClcCUhpRSlGgVSxJoFkdAi20iIDYAbXV9lChoBmgJaA9DCOqRBrf1QonAlIaUUpRoFUtJaBZHQItuZOi35N51fZQoaAZoCWgPQwhQNuUKzwOVwJSGlFKUaBVLFGgWR0CLbxaM72csdX2UKGgGaAloD0MIjPUNTL5blsCUhpRSlGgVSyloFkdAi28cR15jY3V9lChoBmgJaA9DCDRKl/5Vn5vAlIaUUpRoFUufaBZHQItxWpuMuOF1fZQoaAZoCWgPQwixU6waJIyHwJSGlFKUaBVLPGgWR0CLdPXL/0dzdX2UKGgGaAloD0MIn1p9dQValcCUhpRSlGgVSxpoFkdAi3fEHlfZ3HV9lChoBmgJaA9DCNLHfEBQCJvAlIaUUpRoFUtZaBZHQIt3/+GXXy11fZQoaAZoCWgPQwg3p5IBgLaJwJSGlFKUaBVLY2gWR0CLeGwHJLdvdX2UKGgGaAloD0MIBmUaTc4ii8CUhpRSlGgVS0doFkdAi3iPZ7HAAXV9lChoBmgJaA9DCF9cqtIG+pTAlIaUUpRoFUsRaBZHQIt5hT850bN1fZQoaAZoCWgPQwi9p3LaA/eUwJSGlFKUaBVLHGgWR0CLeZFspG4JdX2UKGgGaAloD0MIo1wav/DHlMCUhpRSlGgVSxBoFkdAi3pyfUWl/HV9lChoBmgJaA9DCNNNYhBYspTAlIaUUpRoFUsWaBZHQIt7o71ZkkN1fZQoaAZoCWgPQwhI4XoULmKIwJSGlFKUaBVLPmgWR0CLe9sTFl06dX2UKGgGaAloD0MILxaGyKkWlcCUhpRSlGgVSw9oFkdAi3zMGorFwXV9lChoBmgJaA9DCCv7rgj++ZTAlIaUUpRoFUsTaBZHQIt9oEU0vXd1fZQoaAZoCWgPQwgvGFxzFwuawJSGlFKUaBVLWmgWR0CLflZvkzXSdX2UKGgGaAloD0MIWhE10YeBhcCUhpRSlGgVSzZoFkdAi4Jh3qzJIXV9lChoBmgJaA9DCOUOm8hsyYfAlIaUUpRoFUs7aBZHQIuDQwqRU3p1fZQoaAZoCWgPQwjMfXIU0IiUwJSGlFKUaBVLC2gWR0CLg1fOUt7KdX2UKGgGaAloD0MIsTGvI26nm8CUhpRSlGgVS4doFkdAi4RiVSn+AHV9lChoBmgJaA9DCDYf14Zaw5bAlIaUUpRoFUtqaBZHQIuG6rLhaTx1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-harcodemap-punish-stagnant-long/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c8abeabb43af4570ff0c6e4f35d42ef3f3d3409e6ddde7613e52009935e3710
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant-long/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffb567de95f1ff4696b9e3a0c374bd8e1eea3e942974283880aae22e1eaac701
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-long
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-long
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1104.80 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc645e91b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc645e9240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc645e92d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc645e9360>", "_build": "<function ActorCriticPolicy._build at 0x7fdc645e93f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc645e9480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc645e9510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc645e95a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc645e9630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc645e96c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc645e9750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc645e97e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc645de080>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681933361125072580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAMjLaUPldD6/7FAxQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0LeQ61CaDmNP1fGu0EAAMhCAADIQgAAyEIAAMhCsGF3QlGloUESxYVBa5l6Q2Cq/74AAMhCAABIQgAAIELYOJBCAABwQgAAyEIAAMhC2DiQQti4YEPKN+2+AADIQgAAyEIAACBCAABIQgAAtEIAAMhClry9Qtg4EEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1lJA2l9dlMCUhpRSlIwBbJRNLQGMAXSUR0CK0HtfoicHdX2UKGgGaAloD0MIAYqRJTOPfsCUhpRSlGgVS2xoFkdAitd4Kx9oe3V9lChoBmgJaA9DCASqfxBpd4DAlIaUUpRoFUvfaBZHQIrca08eS0V1fZQoaAZoCWgPQwhZh6OrFBGYwJSGlFKUaBVNLQFoFkdAiuT+40/GEXV9lChoBmgJaA9DCOULWkigyIDAlIaUUpRoFUvQaBZHQIroOdXko4N1fZQoaAZoCWgPQwgN4C2QwHmAwJSGlFKUaBVLsWgWR0CK6yUbkwN9dX2UKGgGaAloD0MIELHBwqkfgMCUhpRSlGgVS7FoFkdAiu4jxkNF0HV9lChoBmgJaA9DCDyInSk0mYDAlIaUUpRoFUunaBZHQIr560fHPu51fZQoaAZoCWgPQwixwFd0+xiUwJSGlFKUaBVNLQFoFkdAiv3bhegL7XV9lChoBmgJaA9DCHfYRGauAIDAlIaUUpRoFUsxaBZHQIr/T9fkWAR1fZQoaAZoCWgPQwi0O6QYAImUwJSGlFKUaBVNLQFoFkdAiwEtTcZccHV9lChoBmgJaA9DCJojK7+MvonAlIaUUpRoFU0tAWgWR0CLBRVQyhzvdX2UKGgGaAloD0MIsyWrIpy1fMCUhpRSlGgVS5loFkdAixAv+OwPiHV9lChoBmgJaA9DCK29T1XB44DAlIaUUpRoFU0TAWgWR0CLINyHVPN3dX2UKGgGaAloD0MIVn2utiLiicCUhpRSlGgVTS0BaBZHQIsl/HzYmLN1fZQoaAZoCWgPQwimnC/2XmaBwJSGlFKUaBVNGAFoFkdAiydi4Bmwq3V9lChoBmgJaA9DCFUUr7KWTpbAlIaUUpRoFU0tAWgWR0CLN6VwgkkbdX2UKGgGaAloD0MIWRmNfN7cgMCUhpRSlGgVS9doFkdAiz7BKtga33V9lChoBmgJaA9DCPxx++VTU4DAlIaUUpRoFUusaBZHQIs/p8v24/h1fZQoaAZoCWgPQwiojH+fcV5+wJSGlFKUaBVL7GgWR0CLRulHBk7PdX2UKGgGaAloD0MICVT/IHKggMCUhpRSlGgVS0loFkdAi0i6q814xHV9lChoBmgJaA9DCH+IDRbOb3zAlIaUUpRoFUtKaBZHQItJ0tAcDKZ1fZQoaAZoCWgPQwj3WPrQJcWAwJSGlFKUaBVL5mgWR0CLVDluFYdRdX2UKGgGaAloD0MIoidlUoOMfMCUhpRSlGgVS6toFkdAi1lPPTodMnV9lChoBmgJaA9DCI6s/DJY3H7AlIaUUpRoFUuTaBZHQItfnZAY51h1fZQoaAZoCWgPQwjFAfT7nl6AwJSGlFKUaBVLc2gWR0CLYZMEA5q/dX2UKGgGaAloD0MI0Qg2ro/Hk8CUhpRSlGgVTS0BaBZHQIthrBfrrxB1fZQoaAZoCWgPQwgs2EY8+aORwJSGlFKUaBVNLQFoFkdAi2LaiCaqj3V9lChoBmgJaA9DCIfe4uE9Hn3AlIaUUpRoFUtdaBZHQItoyBiCrcV1fZQoaAZoCWgPQwj52F2gBFOAwJSGlFKUaBVNGwFoFkdAi7EUrK/203V9lChoBmgJaA9DCMxB0NF6EZHAlIaUUpRoFU0tAWgWR0CLtWPdVNpNdX2UKGgGaAloD0MIueLiqFxWf8CUhpRSlGgVSzFoFkdAi7WAmAskIHV9lChoBmgJaA9DCAzlRLua65DAlIaUUpRoFU0tAWgWR0CLtZZL7GeddX2UKGgGaAloD0MIvVKWIQ4mgMCUhpRSlGgVS75oFkdAi7XzZg5R0nV9lChoBmgJaA9DCHtKzon9j37AlIaUUpRoFUsWaBZHQIu3dqxkd3l1fZQoaAZoCWgPQwiOdAZGHrR+wJSGlFKUaBVLG2gWR0CLuVv1DjR2dX2UKGgGaAloD0MIDYy8rMkTgMCUhpRSlGgVS0doFkdAi7ttLcsUZnV9lChoBmgJaA9DCKhRSDJrkX/AlIaUUpRoFUs+aBZHQIu/Gkk8ifR1fZQoaAZoCWgPQwjzkZT0sAV+wJSGlFKUaBVLD2gWR0CLwEID5j6OdX2UKGgGaAloD0MImlyMgTWxgcCUhpRSlGgVS4doFkdAi8EQblzU7XV9lChoBmgJaA9DCKWeBaG8i4HAlIaUUpRoFUufaBZHQIvDgmLLpzN1fZQoaAZoCWgPQwiISE27+IWBwJSGlFKUaBVLf2gWR0CLy4FyJbdKdX2UKGgGaAloD0MI/YNIhpyugcCUhpRSlGgVS59oFkdAi9G46nzg/HV9lChoBmgJaA9DCLiwbry7l37AlIaUUpRoFUsVaBZHQIvTY1WKdhB1fZQoaAZoCWgPQwijXBq/gKSUwJSGlFKUaBVNLQFoFkdAi9XmBFuvU3V9lChoBmgJaA9DCJ56pMEtf4DAlIaUUpRoFUuHaBZHQIvXWNaQmu11fZQoaAZoCWgPQwh1j2yuWql+wJSGlFKUaBVLHGgWR0CL2CNOM2m6dX2UKGgGaAloD0MIIv32dVA3lsCUhpRSlGgVTS0BaBZHQIvZ/OY6XBx1fZQoaAZoCWgPQwiZhAt5BHt/wJSGlFKUaBVLJmgWR0CL29JCBwuNdX2UKGgGaAloD0MIxebj2nDFgMCUhpRSlGgVS1ZoFkdAi9xLZamoBXV9lChoBmgJaA9DCLfu5qlurJfAlIaUUpRoFU0tAWgWR0CL5PM+NcW1dX2UKGgGaAloD0MItRmnIYqEgsCUhpRSlGgVS8poFkdAi+cAvlEJB3V9lChoBmgJaA9DCKoKDcRSNZrAlIaUUpRoFU0tAWgWR0CL6C5d4VyndX2UKGgGaAloD0MIJxb4ig6LicCUhpRSlGgVTS0BaBZHQIvw0Wl/H5t1fZQoaAZoCWgPQwiocASp9JOAwJSGlFKUaBVLhGgWR0CL8viPQv6CdX2UKGgGaAloD0MIW9JRDuabfsCUhpRSlGgVSxxoFkdAi/NRhUipvXV9lChoBmgJaA9DCKK1os1xoX/AlIaUUpRoFUsfaBZHQIv2AfCAMDx1fZQoaAZoCWgPQwiEg72J4bp+wJSGlFKUaBVLH2gWR0CL+S93bEgodX2UKGgGaAloD0MIOLwgIhUQgsCUhpRSlGgVS9JoFkdAi/tZv99+gHV9lChoBmgJaA9DCIcahSRjwprAlIaUUpRoFU0tAWgWR0CMABTspobodX2UKGgGaAloD0MIiEojZlYkgMCUhpRSlGgVS1NoFkdAjAEA6EJ0GXV9lChoBmgJaA9DCHRGlPamSoDAlIaUUpRoFUs+aBZHQIwBl3r2QGR1fZQoaAZoCWgPQwg1DYrmgeZ+wJSGlFKUaBVLG2gWR0CMAwD2alUIdX2UKGgGaAloD0MIwCZr1IMOfsCUhpRSlGgVSw9oFkdAjATCDVYp2HV9lChoBmgJaA9DCLdCWI3lOYDAlIaUUpRoFUtPaBZHQIwJr0jC53F1fZQoaAZoCWgPQwjN59ztOiqawJSGlFKUaBVNLQFoFkdAjBDzZHuqm3V9lChoBmgJaA9DCLPr3oqEXHzAlIaUUpRoFUuGaBZHQIwWtsi0OVh1fZQoaAZoCWgPQwgXSFD8WEp+wJSGlFKUaBVLEGgWR0CMGGNYKYzBdX2UKGgGaAloD0MIyCWOPFD4g8CUhpRSlGgVS+BoFkdAjBqlzMibD3V9lChoBmgJaA9DCJI7bCITs4DAlIaUUpRoFUtraBZHQIwbsAksz2x1fZQoaAZoCWgPQwh646QwLzl/wJSGlFKUaBVLJmgWR0CMHmgVXV9XdX2UKGgGaAloD0MIeZRKeDJLl8CUhpRSlGgVTS0BaBZHQIwe5YzSCvp1fZQoaAZoCWgPQwhxytx8I+l/wJSGlFKUaBVLNWgWR0CMISRDkU9IdX2UKGgGaAloD0MI+vAsQUYyf8CUhpRSlGgVSyVoFkdAjCTSQHRkVnV9lChoBmgJaA9DCFacai0Msn7AlIaUUpRoFUsdaBZHQIwn5Jul41R1fZQoaAZoCWgPQwgaaam8XZF+wJSGlFKUaBVLGWgWR0CMKv5AQg9vdX2UKGgGaAloD0MIyqZc4V30gcCUhpRSlGgVS4VoFkdAjC0oqTbFj3V9lChoBmgJaA9DCAzKNJqc5X/AlIaUUpRoFUswaBZHQIwwXdCVryl1fZQoaAZoCWgPQwg7yOvBZA1/wJSGlFKUaBVLImgWR0CMNCEr5IpZdX2UKGgGaAloD0MISUikbXyJmcCUhpRSlGgVTS0BaBZHQIw5TM9r4351fZQoaAZoCWgPQwhkIToEjqt+wJSGlFKUaBVLlmgWR0CMPjsoDxLCdX2UKGgGaAloD0MI5DCYv4JYf8CUhpRSlGgVSzNoFkdAjD89Xko4MnV9lChoBmgJaA9DCAQ91LZhRn7AlIaUUpRoFUsLaBZHQIxAC+UQkHF1fZQoaAZoCWgPQwj/0MyTa4iXwJSGlFKUaBVNLQFoFkdAjEBMr3CbdHV9lChoBmgJaA9DCCB9k6aB037AlIaUUpRoFUsaaBZHQIxAkbPyCnR1fZQoaAZoCWgPQwjU1ohgnOR+wJSGlFKUaBVLJmgWR0CMREGqPwNLdX2UKGgGaAloD0MIy4XKv5ZDf8CUhpRSlGgVSytoFkdAjEVRRl6JInV9lChoBmgJaA9DCBYUBmXau4DAlIaUUpRoFUu5aBZHQIxIzHhjvux1fZQoaAZoCWgPQwiGVbyReWGAwJSGlFKUaBVLbWgWR0CMTIwDeTFEdX2UKGgGaAloD0MInwH1ZnTrgMCUhpRSlGgVS0xoFkdAjE/TYmLLp3V9lChoBmgJaA9DCLQFhNZDun7AlIaUUpRoFUsdaBZHQIxR9RxcVxl1fZQoaAZoCWgPQwg1tAHYYBaAwJSGlFKUaBVLR2gWR0CMWFfVI7NjdX2UKGgGaAloD0MIz6Chf4LzgcCUhpRSlGgVS+toFkdAjFsaDoQnQnV9lChoBmgJaA9DCPVnP1IEO37AlIaUUpRoFUsOaBZHQIxcXMMZxaR1fZQoaAZoCWgPQwhhNCvbRzCdwJSGlFKUaBVNLQFoFkdAjGB0W/JvHnV9lChoBmgJaA9DCEt1AS/DlpXAlIaUUpRoFU0tAWgWR0CMaUhbGFSLdX2UKGgGaAloD0MIAVEwY0otgMCUhpRSlGgVS1ZoFkdAjGrTdLxqf3V9lChoBmgJaA9DCMaLhSFyt4DAlIaUUpRoFUuJaBZHQIxsIWBSUC91fZQoaAZoCWgPQwigUE8fQTh+wJSGlFKUaBVLCmgWR0CMbC0/GEPEdX2UKGgGaAloD0MInBcnvhoPf8CUhpRSlGgVSxpoFkdAjGy6q814xHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4eb18ed1b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4eb18ed240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4eb18ed2d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4eb18ed360>", "_build": "<function ActorCriticPolicy._build at 0x7f4eb18ed3f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4eb18ed480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4eb18ed510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4eb18ed5a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4eb18ed630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4eb18ed6c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4eb18ed750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4eb18ed7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4eb18de400>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681935196268149594, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAPwI70J0zJu/Z8UlQpeaGUKLaFVCAADIQgAAyEIAAMhCAADIQgAAyEIS8QdDQ9q6v5tnskFtL51BFdDPQQAAyEIAAMhCAADIQgAAyEIAAMhC5UUwQ98z578AAMhCVU26Qt21s0IAAMhCAADIQpUhokIAAMhCAADIQsjLaUNL2yS/AADIQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0KUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2T7kLSfBlMCUhpRSlIwBbJRLDYwBdJRHQIrjKQzUI9l1fZQoaAZoCWgPQwi63GCoo9CHwJSGlFKUaBVLVWgWR0CK5ZNrTH81dX2UKGgGaAloD0MIdy6M9CKqhMCUhpRSlGgVSyRoFkdAiuaKF7D2rXV9lChoBmgJaA9DCB+CqtFLuZTAlIaUUpRoFUtjaBZHQIrm59PUKAt1fZQoaAZoCWgPQwj7QPLOMbCUwJSGlFKUaBVLE2gWR0CK56CA+Y+jdX2UKGgGaAloD0MIOQt72oFah8CUhpRSlGgVSzRoFkdAiulAwXZXdXV9lChoBmgJaA9DCKvLKQGBApbAlIaUUpRoFUsfaBZHQIrqRpWV/tp1fZQoaAZoCWgPQwjL1Y9NMo2HwJSGlFKUaBVLNmgWR0CK7bq8DjiodX2UKGgGaAloD0MI46YGmq8DhcCUhpRSlGgVS0hoFkdAivKgG8mKInV9lChoBmgJaA9DCIwtBDnYz5TAlIaUUpRoFUsPaBZHQIr0fx4IKMN1fZQoaAZoCWgPQwiLNVzkTrGawJSGlFKUaBVLd2gWR0CK9rp/PPcBdX2UKGgGaAloD0MIQS0GD9ONlMCUhpRSlGgVSxdoFkdAivdUpd8iOnV9lChoBmgJaA9DCMu+K4J/g5bAlIaUUpRoFUuAaBZHQIr6fEuQIUt1fZQoaAZoCWgPQwioiqn001SZwJSGlFKUaBVLf2gWR0CK/bB0p3HJdX2UKGgGaAloD0MICDnv/+NBlcCUhpRSlGgVSxRoFkdAiwAllsguAnV9lChoBmgJaA9DCGRbBpxFUpnAlIaUUpRoFUtOaBZHQIsA/YcvM8p1fZQoaAZoCWgPQwhtqu6RrTaHwJSGlFKUaBVLPGgWR0CLAaFV1fVqdX2UKGgGaAloD0MI0SLb+b7elcCUhpRSlGgVSxVoFkdAiwODJEH+qHV9lChoBmgJaA9DCPjii/b4lZTAlIaUUpRoFUsVaBZHQIsFRY3eenR1fZQoaAZoCWgPQwic+GpH8ZSUwJSGlFKUaBVLiWgWR0CLBZ15jYqYdX2UKGgGaAloD0MICCKLNBEwksCUhpRSlGgVS3ZoFkdAiwuFDfFaS3V9lChoBmgJaA9DCDVDqiheNo7AlIaUUpRoFUtMaBZHQIsMQXuVopR1fZQoaAZoCWgPQwg7Oq5GlueUwJSGlFKUaBVLjGgWR0CLDOuLaVUudX2UKGgGaAloD0MIgSBAhp4IlsCUhpRSlGgVSxRoFkdAiw3P9UCJXXV9lChoBmgJaA9DCMfVyK4U+JvAlIaUUpRoFUuQaBZHQIsSxggHNX51fZQoaAZoCWgPQwhIisiwOtmSwJSGlFKUaBVLYGgWR0CLE+3Q2MsIdX2UKGgGaAloD0MIibfOv33licCUhpRSlGgVS0poFkdAixQ2dNFjNXV9lChoBmgJaA9DCOhsAaH105XAlIaUUpRoFUsaaBZHQIsUsLQXyiF1fZQoaAZoCWgPQwgf9GxWPRiWwJSGlFKUaBVLJ2gWR0CLFvx7zCk5dX2UKGgGaAloD0MIWTUIcyuEm8CUhpRSlGgVS4toFkdAixhv4ubqhXV9lChoBmgJaA9DCLgGtkpQq4zAlIaUUpRoFUtMaBZHQIsaDF6zE751fZQoaAZoCWgPQwgROBJoEPmZwJSGlFKUaBVLTGgWR0CLHuMLncL0dX2UKGgGaAloD0MI/BnerJF1mcCUhpRSlGgVS3FoFkdAiyC1zp5eJHV9lChoBmgJaA9DCOq0boPaVpzAlIaUUpRoFUufaBZHQIsiD4DcM3J1fZQoaAZoCWgPQwgZ5C7C5LCUwJSGlFKUaBVLGmgWR0CLIq4YrJ8wdX2UKGgGaAloD0MIEOZ2L9dSh8CUhpRSlGgVSzJoFkdAiyMX7Lt/nXV9lChoBmgJaA9DCEdxjjra/pTAlIaUUpRoFUsTaBZHQIsjZJul41R1fZQoaAZoCWgPQwhxrmGGhteawJSGlFKUaBVLdWgWR0CLJAGvfTCtdX2UKGgGaAloD0MIyeTUzvCvlMCUhpRSlGgVSx5oFkdAiySlMZgogHV9lChoBmgJaA9DCDy/KEHfbpXAlIaUUpRoFUsUaBZHQIskqIUJv5x1fZQoaAZoCWgPQwgPJzCdVv2UwJSGlFKUaBVLGmgWR0CLJMvmHP/rdX2UKGgGaAloD0MIn7DEA9oklcCUhpRSlGgVSyFoFkdAiyfShBZ6lnV9lChoBmgJaA9DCP5EZcOaRovAlIaUUpRoFUtQaBZHQIssGNzbN8p1fZQoaAZoCWgPQwiNDHIXMROcwJSGlFKUaBVLh2gWR0CLMEM+/xlQdX2UKGgGaAloD0MI14hgHOzuksCUhpRSlGgVS4RoFkdAizEKFAVwgnV9lChoBmgJaA9DCEcf8wGhHpvAlIaUUpRoFUtiaBZHQIsxITqSowV1fZQoaAZoCWgPQwhmiGNdHHaVwJSGlFKUaBVLEmgWR0CLMqGs3hn8dX2UKGgGaAloD0MIo4/5gEBOmcCUhpRSlGgVS2NoFkdAizVHOKO1fHV9lChoBmgJaA9DCO9zfLSoxpXAlIaUUpRoFUsPaBZHQIs2k4WDYiB1fZQoaAZoCWgPQwhDxqNU4lGOwJSGlFKUaBVLSGgWR0CLN4RxtHhCdX2UKGgGaAloD0MIj/zBwKOrlMCUhpRSlGgVS3hoFkdAizsLNwBHTnV9lChoBmgJaA9DCC++aI93E4bAlIaUUpRoFUs4aBZHQIs7dhkRSP51fZQoaAZoCWgPQwhtWb4u80uVwJSGlFKUaBVLE2gWR0CLPJ00WM0hdX2UKGgGaAloD0MIByeiXysflcCUhpRSlGgVSxhoFkdAiz2cgIQe3nV9lChoBmgJaA9DCCycpPmDiJTAlIaUUpRoFUsRaBZHQIs+MeGO+7F1fZQoaAZoCWgPQwhHcvkPSWWawJSGlFKUaBVLaGgWR0CLQO9cry2AdX2UKGgGaAloD0MIKxIT1GDEm8CUhpRSlGgVS6FoFkdAi0FFz2exwHV9lChoBmgJaA9DCILHt3cdGpXAlIaUUpRoFUsTaBZHQItC4rMC9yt1fZQoaAZoCWgPQwicNuM01C6bwJSGlFKUaBVLc2gWR0CLSWfwI+nqdX2UKGgGaAloD0MImfT3Urg+m8CUhpRSlGgVS31oFkdAi0rrZBcAznV9lChoBmgJaA9DCKX3ja/d7ZTAlIaUUpRoFUsQaBZHQItMH863iJh1fZQoaAZoCWgPQwhMw/AR8QmGwJSGlFKUaBVLMWgWR0CLTUh9srNGdX2UKGgGaAloD0MI8l61MgGUlcCUhpRSlGgVS4ZoFkdAi04pBgNPQHV9lChoBmgJaA9DCEkRGVYBYJbAlIaUUpRoFUuGaBZHQItPc3S8an91fZQoaAZoCWgPQwiPcFrwUjaVwJSGlFKUaBVLEWgWR0CLT6kBS1mbdX2UKGgGaAloD0MIi/z6IZaphcCUhpRSlGgVS0NoFkdAi1H4y44IbHV9lChoBmgJaA9DCKLQsu5f6JTAlIaUUpRoFUsSaBZHQItTqEBbOeJ1fZQoaAZoCWgPQwi6awn54FGawJSGlFKUaBVLV2gWR0CLVX9Ujs2OdX2UKGgGaAloD0MIn+bkRSbchcCUhpRSlGgVS0toFkdAi1asU7CBPXV9lChoBmgJaA9DCFMDzefcRI7AlIaUUpRoFUtQaBZHQIta5sXSBsh1fZQoaAZoCWgPQwg8vr1rUCOHwJSGlFKUaBVLO2gWR0CLW5GjsUqQdX2UKGgGaAloD0MIZYnOMqulm8CUhpRSlGgVS5ZoFkdAi12BAOavzXV9lChoBmgJaA9DCLe1hedVXZvAlIaUUpRoFUt7aBZHQItg2GATZg51fZQoaAZoCWgPQwg5tMh2vnWOwJSGlFKUaBVLYmgWR0CLZebVjI7vdX2UKGgGaAloD0MIq1yo/MuXi8CUhpRSlGgVS1poFkdAi2b35N47inV9lChoBmgJaA9DCKKyYU1lO5bAlIaUUpRoFUuaaBZHQItrBD/lyR11fZQoaAZoCWgPQwhZF7fRgBqGwJSGlFKUaBVLM2gWR0CLa0gSvkimdX2UKGgGaAloD0MIkJ4ih7gClcCUhpRSlGgVSxJoFkdAi20iIDYAbXV9lChoBmgJaA9DCOqRBrf1QonAlIaUUpRoFUtJaBZHQItuZOi35N51fZQoaAZoCWgPQwhQNuUKzwOVwJSGlFKUaBVLFGgWR0CLbxaM72csdX2UKGgGaAloD0MIjPUNTL5blsCUhpRSlGgVSyloFkdAi28cR15jY3V9lChoBmgJaA9DCDRKl/5Vn5vAlIaUUpRoFUufaBZHQItxWpuMuOF1fZQoaAZoCWgPQwixU6waJIyHwJSGlFKUaBVLPGgWR0CLdPXL/0dzdX2UKGgGaAloD0MIn1p9dQValcCUhpRSlGgVSxpoFkdAi3fEHlfZ3HV9lChoBmgJaA9DCNLHfEBQCJvAlIaUUpRoFUtZaBZHQIt3/+GXXy11fZQoaAZoCWgPQwg3p5IBgLaJwJSGlFKUaBVLY2gWR0CLeGwHJLdvdX2UKGgGaAloD0MIBmUaTc4ii8CUhpRSlGgVS0doFkdAi3iPZ7HAAXV9lChoBmgJaA9DCF9cqtIG+pTAlIaUUpRoFUsRaBZHQIt5hT850bN1fZQoaAZoCWgPQwi9p3LaA/eUwJSGlFKUaBVLHGgWR0CLeZFspG4JdX2UKGgGaAloD0MIo1wav/DHlMCUhpRSlGgVSxBoFkdAi3pyfUWl/HV9lChoBmgJaA9DCNNNYhBYspTAlIaUUpRoFUsWaBZHQIt7o71ZkkN1fZQoaAZoCWgPQwhI4XoULmKIwJSGlFKUaBVLPmgWR0CLe9sTFl06dX2UKGgGaAloD0MILxaGyKkWlcCUhpRSlGgVSw9oFkdAi3zMGorFwXV9lChoBmgJaA9DCCv7rgj++ZTAlIaUUpRoFUsTaBZHQIt9oEU0vXd1fZQoaAZoCWgPQwgvGFxzFwuawJSGlFKUaBVLWmgWR0CLflZvkzXSdX2UKGgGaAloD0MIWhE10YeBhcCUhpRSlGgVSzZoFkdAi4Jh3qzJIXV9lChoBmgJaA9DCOUOm8hsyYfAlIaUUpRoFUs7aBZHQIuDQwqRU3p1fZQoaAZoCWgPQwjMfXIU0IiUwJSGlFKUaBVLC2gWR0CLg1fOUt7KdX2UKGgGaAloD0MIsTGvI26nm8CUhpRSlGgVS4doFkdAi4RiVSn+AHV9lChoBmgJaA9DCDYf14Zaw5bAlIaUUpRoFUtqaBZHQIuG6rLhaTx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7042f36d0afc55c7a633f9198e42f81d4c7f63fb241bf0838834c87f5983ab1e
|
3 |
+
size 1262426
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1104.7967945098876, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T13:28:27.833164"}
|