Upload model to Hugging Face
Browse files- BC-harcodemap-punish-stagnant-long.zip +2 -2
- BC-harcodemap-punish-stagnant-long/data +17 -17
- BC-harcodemap-punish-stagnant-long/policy.optimizer.pth +1 -1
- BC-harcodemap-punish-stagnant-long/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
BC-harcodemap-punish-stagnant-long.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:406a1e10bb410f9c733769f5f47e9635d3a3e93914a67765a2cddf31775f4f68
|
3 |
+
size 44054
|
BC-harcodemap-punish-stagnant-long/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,11 +57,11 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc645e91b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc645e9240>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc645e92d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc645e9360>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdc645e93f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdc645e9480>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc645e9510>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc645e95a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdc645e9630>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc645e96c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc645e9750>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc645e97e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fdc645de080>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681933361125072580,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAMjLaUPldD6/7FAxQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0LeQ61CaDmNP1fGu0EAAMhCAADIQgAAyEIAAMhCsGF3QlGloUESxYVBa5l6Q2Cq/74AAMhCAABIQgAAIELYOJBCAABwQgAAyEIAAMhC2DiQQti4YEPKN+2+AADIQgAAyEIAACBCAABIQgAAtEIAAMhClry9Qtg4EEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1lJA2l9dlMCUhpRSlIwBbJRNLQGMAXSUR0CK0HtfoicHdX2UKGgGaAloD0MIAYqRJTOPfsCUhpRSlGgVS2xoFkdAitd4Kx9oe3V9lChoBmgJaA9DCASqfxBpd4DAlIaUUpRoFUvfaBZHQIrca08eS0V1fZQoaAZoCWgPQwhZh6OrFBGYwJSGlFKUaBVNLQFoFkdAiuT+40/GEXV9lChoBmgJaA9DCOULWkigyIDAlIaUUpRoFUvQaBZHQIroOdXko4N1fZQoaAZoCWgPQwgN4C2QwHmAwJSGlFKUaBVLsWgWR0CK6yUbkwN9dX2UKGgGaAloD0MIELHBwqkfgMCUhpRSlGgVS7FoFkdAiu4jxkNF0HV9lChoBmgJaA9DCDyInSk0mYDAlIaUUpRoFUunaBZHQIr560fHPu51fZQoaAZoCWgPQwixwFd0+xiUwJSGlFKUaBVNLQFoFkdAiv3bhegL7XV9lChoBmgJaA9DCHfYRGauAIDAlIaUUpRoFUsxaBZHQIr/T9fkWAR1fZQoaAZoCWgPQwi0O6QYAImUwJSGlFKUaBVNLQFoFkdAiwEtTcZccHV9lChoBmgJaA9DCJojK7+MvonAlIaUUpRoFU0tAWgWR0CLBRVQyhzvdX2UKGgGaAloD0MIsyWrIpy1fMCUhpRSlGgVS5loFkdAixAv+OwPiHV9lChoBmgJaA9DCK29T1XB44DAlIaUUpRoFU0TAWgWR0CLINyHVPN3dX2UKGgGaAloD0MIVn2utiLiicCUhpRSlGgVTS0BaBZHQIsl/HzYmLN1fZQoaAZoCWgPQwimnC/2XmaBwJSGlFKUaBVNGAFoFkdAiydi4Bmwq3V9lChoBmgJaA9DCFUUr7KWTpbAlIaUUpRoFU0tAWgWR0CLN6VwgkkbdX2UKGgGaAloD0MIWRmNfN7cgMCUhpRSlGgVS9doFkdAiz7BKtga33V9lChoBmgJaA9DCPxx++VTU4DAlIaUUpRoFUusaBZHQIs/p8v24/h1fZQoaAZoCWgPQwiojH+fcV5+wJSGlFKUaBVL7GgWR0CLRulHBk7PdX2UKGgGaAloD0MICVT/IHKggMCUhpRSlGgVS0loFkdAi0i6q814xHV9lChoBmgJaA9DCH+IDRbOb3zAlIaUUpRoFUtKaBZHQItJ0tAcDKZ1fZQoaAZoCWgPQwj3WPrQJcWAwJSGlFKUaBVL5mgWR0CLVDluFYdRdX2UKGgGaAloD0MIoidlUoOMfMCUhpRSlGgVS6toFkdAi1lPPTodMnV9lChoBmgJaA9DCI6s/DJY3H7AlIaUUpRoFUuTaBZHQItfnZAY51h1fZQoaAZoCWgPQwjFAfT7nl6AwJSGlFKUaBVLc2gWR0CLYZMEA5q/dX2UKGgGaAloD0MI0Qg2ro/Hk8CUhpRSlGgVTS0BaBZHQIthrBfrrxB1fZQoaAZoCWgPQwgs2EY8+aORwJSGlFKUaBVNLQFoFkdAi2LaiCaqj3V9lChoBmgJaA9DCIfe4uE9Hn3AlIaUUpRoFUtdaBZHQItoyBiCrcV1fZQoaAZoCWgPQwj52F2gBFOAwJSGlFKUaBVNGwFoFkdAi7EUrK/203V9lChoBmgJaA9DCMxB0NF6EZHAlIaUUpRoFU0tAWgWR0CLtWPdVNpNdX2UKGgGaAloD0MIueLiqFxWf8CUhpRSlGgVSzFoFkdAi7WAmAskIHV9lChoBmgJaA9DCAzlRLua65DAlIaUUpRoFU0tAWgWR0CLtZZL7GeddX2UKGgGaAloD0MIvVKWIQ4mgMCUhpRSlGgVS75oFkdAi7XzZg5R0nV9lChoBmgJaA9DCHtKzon9j37AlIaUUpRoFUsWaBZHQIu3dqxkd3l1fZQoaAZoCWgPQwiOdAZGHrR+wJSGlFKUaBVLG2gWR0CLuVv1DjR2dX2UKGgGaAloD0MIDYy8rMkTgMCUhpRSlGgVS0doFkdAi7ttLcsUZnV9lChoBmgJaA9DCKhRSDJrkX/AlIaUUpRoFUs+aBZHQIu/Gkk8ifR1fZQoaAZoCWgPQwjzkZT0sAV+wJSGlFKUaBVLD2gWR0CLwEID5j6OdX2UKGgGaAloD0MImlyMgTWxgcCUhpRSlGgVS4doFkdAi8EQblzU7XV9lChoBmgJaA9DCKWeBaG8i4HAlIaUUpRoFUufaBZHQIvDgmLLpzN1fZQoaAZoCWgPQwiISE27+IWBwJSGlFKUaBVLf2gWR0CLy4FyJbdKdX2UKGgGaAloD0MI/YNIhpyugcCUhpRSlGgVS59oFkdAi9G46nzg/HV9lChoBmgJaA9DCLiwbry7l37AlIaUUpRoFUsVaBZHQIvTY1WKdhB1fZQoaAZoCWgPQwijXBq/gKSUwJSGlFKUaBVNLQFoFkdAi9XmBFuvU3V9lChoBmgJaA9DCJ56pMEtf4DAlIaUUpRoFUuHaBZHQIvXWNaQmu11fZQoaAZoCWgPQwh1j2yuWql+wJSGlFKUaBVLHGgWR0CL2CNOM2m6dX2UKGgGaAloD0MIIv32dVA3lsCUhpRSlGgVTS0BaBZHQIvZ/OY6XBx1fZQoaAZoCWgPQwiZhAt5BHt/wJSGlFKUaBVLJmgWR0CL29JCBwuNdX2UKGgGaAloD0MIxebj2nDFgMCUhpRSlGgVS1ZoFkdAi9xLZamoBXV9lChoBmgJaA9DCLfu5qlurJfAlIaUUpRoFU0tAWgWR0CL5PM+NcW1dX2UKGgGaAloD0MItRmnIYqEgsCUhpRSlGgVS8poFkdAi+cAvlEJB3V9lChoBmgJaA9DCKoKDcRSNZrAlIaUUpRoFU0tAWgWR0CL6C5d4VyndX2UKGgGaAloD0MIJxb4ig6LicCUhpRSlGgVTS0BaBZHQIvw0Wl/H5t1fZQoaAZoCWgPQwiocASp9JOAwJSGlFKUaBVLhGgWR0CL8viPQv6CdX2UKGgGaAloD0MIW9JRDuabfsCUhpRSlGgVSxxoFkdAi/NRhUipvXV9lChoBmgJaA9DCKK1os1xoX/AlIaUUpRoFUsfaBZHQIv2AfCAMDx1fZQoaAZoCWgPQwiEg72J4bp+wJSGlFKUaBVLH2gWR0CL+S93bEgodX2UKGgGaAloD0MIOLwgIhUQgsCUhpRSlGgVS9JoFkdAi/tZv99+gHV9lChoBmgJaA9DCIcahSRjwprAlIaUUpRoFU0tAWgWR0CMABTspobodX2UKGgGaAloD0MIiEojZlYkgMCUhpRSlGgVS1NoFkdAjAEA6EJ0GXV9lChoBmgJaA9DCHRGlPamSoDAlIaUUpRoFUs+aBZHQIwBl3r2QGR1fZQoaAZoCWgPQwg1DYrmgeZ+wJSGlFKUaBVLG2gWR0CMAwD2alUIdX2UKGgGaAloD0MIwCZr1IMOfsCUhpRSlGgVSw9oFkdAjATCDVYp2HV9lChoBmgJaA9DCLdCWI3lOYDAlIaUUpRoFUtPaBZHQIwJr0jC53F1fZQoaAZoCWgPQwjN59ztOiqawJSGlFKUaBVNLQFoFkdAjBDzZHuqm3V9lChoBmgJaA9DCLPr3oqEXHzAlIaUUpRoFUuGaBZHQIwWtsi0OVh1fZQoaAZoCWgPQwgXSFD8WEp+wJSGlFKUaBVLEGgWR0CMGGNYKYzBdX2UKGgGaAloD0MIyCWOPFD4g8CUhpRSlGgVS+BoFkdAjBqlzMibD3V9lChoBmgJaA9DCJI7bCITs4DAlIaUUpRoFUtraBZHQIwbsAksz2x1fZQoaAZoCWgPQwh646QwLzl/wJSGlFKUaBVLJmgWR0CMHmgVXV9XdX2UKGgGaAloD0MIeZRKeDJLl8CUhpRSlGgVTS0BaBZHQIwe5YzSCvp1fZQoaAZoCWgPQwhxytx8I+l/wJSGlFKUaBVLNWgWR0CMISRDkU9IdX2UKGgGaAloD0MI+vAsQUYyf8CUhpRSlGgVSyVoFkdAjCTSQHRkVnV9lChoBmgJaA9DCFacai0Msn7AlIaUUpRoFUsdaBZHQIwn5Jul41R1fZQoaAZoCWgPQwgaaam8XZF+wJSGlFKUaBVLGWgWR0CMKv5AQg9vdX2UKGgGaAloD0MIyqZc4V30gcCUhpRSlGgVS4VoFkdAjC0oqTbFj3V9lChoBmgJaA9DCAzKNJqc5X/AlIaUUpRoFUswaBZHQIwwXdCVryl1fZQoaAZoCWgPQwg7yOvBZA1/wJSGlFKUaBVLImgWR0CMNCEr5IpZdX2UKGgGaAloD0MISUikbXyJmcCUhpRSlGgVTS0BaBZHQIw5TM9r4351fZQoaAZoCWgPQwhkIToEjqt+wJSGlFKUaBVLlmgWR0CMPjsoDxLCdX2UKGgGaAloD0MI5DCYv4JYf8CUhpRSlGgVSzNoFkdAjD89Xko4MnV9lChoBmgJaA9DCAQ91LZhRn7AlIaUUpRoFUsLaBZHQIxAC+UQkHF1fZQoaAZoCWgPQwj/0MyTa4iXwJSGlFKUaBVNLQFoFkdAjEBMr3CbdHV9lChoBmgJaA9DCCB9k6aB037AlIaUUpRoFUsaaBZHQIxAkbPyCnR1fZQoaAZoCWgPQwjU1ohgnOR+wJSGlFKUaBVLJmgWR0CMREGqPwNLdX2UKGgGaAloD0MIy4XKv5ZDf8CUhpRSlGgVSytoFkdAjEVRRl6JInV9lChoBmgJaA9DCBYUBmXau4DAlIaUUpRoFUu5aBZHQIxIzHhjvux1fZQoaAZoCWgPQwiGVbyReWGAwJSGlFKUaBVLbWgWR0CMTIwDeTFEdX2UKGgGaAloD0MInwH1ZnTrgMCUhpRSlGgVS0xoFkdAjE/TYmLLp3V9lChoBmgJaA9DCLQFhNZDun7AlIaUUpRoFUsdaBZHQIxR9RxcVxl1fZQoaAZoCWgPQwg1tAHYYBaAwJSGlFKUaBVLR2gWR0CMWFfVI7NjdX2UKGgGaAloD0MIz6Chf4LzgcCUhpRSlGgVS+toFkdAjFsaDoQnQnV9lChoBmgJaA9DCPVnP1IEO37AlIaUUpRoFUsOaBZHQIxcXMMZxaR1fZQoaAZoCWgPQwhhNCvbRzCdwJSGlFKUaBVNLQFoFkdAjGB0W/JvHnV9lChoBmgJaA9DCEt1AS/DlpXAlIaUUpRoFU0tAWgWR0CMaUhbGFSLdX2UKGgGaAloD0MIAVEwY0otgMCUhpRSlGgVS1ZoFkdAjGrTdLxqf3V9lChoBmgJaA9DCMaLhSFyt4DAlIaUUpRoFUuJaBZHQIxsIWBSUC91fZQoaAZoCWgPQwigUE8fQTh+wJSGlFKUaBVLCmgWR0CMbC0/GEPEdX2UKGgGaAloD0MInBcnvhoPf8CUhpRSlGgVSxpoFkdAjGy6q814xHVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
BC-harcodemap-punish-stagnant-long/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbc8b4cbce95c2fdf812b795ec00ec4c3be359d1edd7b97e3b1585e9a152936f
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant-long/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0a115cfe1928f62a3b9daf7328233cc20bbb52cac416ccf9731a2e639ca5357
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-long
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant-long
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1035.22 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b1e0f51b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b1e0f5240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b1e0f52d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b1e0f5360>", "_build": "<function ActorCriticPolicy._build at 0x7f9b1e0f53f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9b1e0f5480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9b1e0f5510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b1e0f55a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9b1e0f5630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b1e0f56c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b1e0f5750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b1e0f57e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9b1e3af200>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681931216593386501, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAAdtKENs6ShAAADIQgAAyEJGQJJCAADIQgAAyEIBHI5CAADIQgAAyEKpkAVDpKlMv9thWEIdMGdCfOLGQgAAyEIAAMhCAADIQgAAyEIAAMhC4ggSQ2ONKEAAAMhCgq2AQgAAyEIAAMhCr8u1Qg8Xf0JkLJZCAADIQk+FEkOT0QdAAADIQgAAyEIAAMhCAADIQgAAyEJaaThCSs8VQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUtUEUbfOfsCUhpRSlIwBbJRLF4wBdJRHQItKqAxzq8l1fZQoaAZoCWgPQwhRobq5+KFXQJSGlFKUaBVNLQFoFkdAi0sCvPkaM3V9lChoBmgJaA9DCNZuu9BcrHnAlIaUUpRoFUtaaBZHQItNbQJHAh11fZQoaAZoCWgPQwh+N92yw6V+wJSGlFKUaBVL+2gWR0CLUle1KGtZdX2UKGgGaAloD0MIyEW1iKg/e8CUhpRSlGgVSytoFkdAi1KdSl3yJHV9lChoBmgJaA9DCGA97lvtN3/AlIaUUpRoFUslaBZHQItWV/MGHHp1fZQoaAZoCWgPQwia7Qp98Dd6wJSGlFKUaBVLamgWR0CLVnFDOTq0dX2UKGgGaAloD0MI6bga2dX9f8CUhpRSlGgVS1xoFkdAi13uwosqa3V9lChoBmgJaA9DCHnMQGXcRIHAlIaUUpRoFUu8aBZHQItgcYIjW091fZQoaAZoCWgPQwhuaqD53J16wJSGlFKUaBVLLWgWR0CLY8ZMtbs4dX2UKGgGaAloD0MIEhWqm4tGe8CUhpRSlGgVS2toFkdAi2RwIdELIHV9lChoBmgJaA9DCMxAZfz7knnAlIaUUpRoFUtLaBZHQItqNanrIHV1fZQoaAZoCWgPQwgbgA2I0NJ4wJSGlFKUaBVLP2gWR0CLbD2s7uD0dX2UKGgGaAloD0MI54wo7Y1gf8CUhpRSlGgVSxtoFkdAi24ZtelbeXV9lChoBmgJaA9DCAADQYCMonnAlIaUUpRoFUsnaBZHQItx4AAAAAB1fZQoaAZoCWgPQwgtr1xvW5mCwJSGlFKUaBVL1GgWR0CLcoNvOyE+dX2UKGgGaAloD0MIB1+YTFXJeMCUhpRSlGgVSzVoFkdAi3RnQhOgx3V9lChoBmgJaA9DCGlU4GRbWIDAlIaUUpRoFUuDaBZHQIt1Rxm03Ox1fZQoaAZoCWgPQwjcDg2LkZt/wJSGlFKUaBVLIWgWR0CLefUutfXxdX2UKGgGaAloD0MIknajj/kne8CUhpRSlGgVS1doFkdAi37R1xKg7HV9lChoBmgJaA9DCCP0M/X643nAlIaUUpRoFUtlaBZHQIuEuW0JF9d1fZQoaAZoCWgPQwh4YWu2MqR4wJSGlFKUaBVLO2gWR0CLhSHSnccmdX2UKGgGaAloD0MIIApmTCESgcCUhpRSlGgVS7BoFkdAi4ZS+Yc/+3V9lChoBmgJaA9DCFThz/DmtX/AlIaUUpRoFUssaBZHQIuLWCoS+QF1fZQoaAZoCWgPQwh5sMVuj7uUQJSGlFKUaBVL7GgWR0CLjI6r/82rdX2UKGgGaAloD0MImboru2BtecCUhpRSlGgVS0doFkdAi421GCqZMXV9lChoBmgJaA9DCATj4NKxvnvAlIaUUpRoFUszaBZHQIuSBbB42TB1fZQoaAZoCWgPQwjiOsYVV7B6wJSGlFKUaBVLTWgWR0CLlUbrC3w1dX2UKGgGaAloD0MIMpI9Qo1of8CUhpRSlGgVSyJoFkdAi5hWhh6SknV9lChoBmgJaA9DCNUiophcAIDAlIaUUpRoFUt9aBZHQIuZ0jTrmhd1fZQoaAZoCWgPQwjl0viFV5N+wJSGlFKUaBVLDWgWR0CLmphScbzcdX2UKGgGaAloD0MIYCAIkCHyesCUhpRSlGgVS3JoFkdAi5sQZ4wAVHV9lChoBmgJaA9DCMHgmju69HnAlIaUUpRoFUs4aBZHQIubw7Pppvh1fZQoaAZoCWgPQwgjaqLPp4mAwJSGlFKUaBVNCgFoFkdAi51or4Fia3V9lChoBmgJaA9DCPIlVHC4iHjAlIaUUpRoFUs7aBZHQIud6dtl7MR1fZQoaAZoCWgPQwheY5eoHoR6wJSGlFKUaBVLP2gWR0CLnvVT72tddX2UKGgGaAloD0MILexph//KecCUhpRSlGgVS05oFkdAi6EBtUGVzXV9lChoBmgJaA9DCHjy6bGtk3nAlIaUUpRoFUs2aBZHQIuho+nqFAV1fZQoaAZoCWgPQwivd3+817Z4wJSGlFKUaBVLOWgWR0CLoi6TW5H3dX2UKGgGaAloD0MIyJi7llBresCUhpRSlGgVSzNoFkdAi6LdGiHqNnV9lChoBmgJaA9DCMr5Yu8F9nrAlIaUUpRoFUtBaBZHQIunCvzOHFh1fZQoaAZoCWgPQwh2ptB5Tdt4wJSGlFKUaBVLQGgWR0CLp5SKm8/VdX2UKGgGaAloD0MIIqXZPE6aeMCUhpRSlGgVSzpoFkdAi6e0Kqn3tnV9lChoBmgJaA9DCOCCbFn+5X7AlIaUUpRoFUsWaBZHQIupsMNMGot1fZQoaAZoCWgPQwgsSZ7ru9h6wJSGlFKUaBVLS2gWR0CLrXv3rUsndX2UKGgGaAloD0MIVRSvsnbOfsCUhpRSlGgVSxhoFkdAi6/BJZntfHV9lChoBmgJaA9DCG8MAcCRwIDAlIaUUpRoFUvkaBZHQIv8FJz1bq11fZQoaAZoCWgPQwhQ+62daJSAwJSGlFKUaBVLzGgWR0CMALVZs9B9dX2UKGgGaAloD0MIrTB9r2GEecCUhpRSlGgVS7loFkdAjADNMPBi1HV9lChoBmgJaA9DCHqPM02Yd4DAlIaUUpRoFUuRaBZHQIwI7JSzgMt1fZQoaAZoCWgPQwiJsUy/BAt+wJSGlFKUaBVLW2gWR0CMCZWAf+0gdX2UKGgGaAloD0MIuw7VlGRof8CUhpRSlGgVS1JoFkdAjA8fpMYdhnV9lChoBmgJaA9DCB2taklHzXnAlIaUUpRoFU0tAWgWR0CMEC5J9RaYdX2UKGgGaAloD0MI9Wc/UgTSgMCUhpRSlGgVS4BoFkdAjBI/BeokzHV9lChoBmgJaA9DCOy/zk3bkYHAlIaUUpRoFU0GAWgWR0CMFXEDQqqfdX2UKGgGaAloD0MI0QK0rWaafcCUhpRSlGgVS3NoFkdAjBhE8A7xNXV9lChoBmgJaA9DCBbCaizhHXzAlIaUUpRoFUtJaBZHQIwbNhAnlXB1fZQoaAZoCWgPQwgFbXL45B94wJSGlFKUaBVLNGgWR0CMHJmJWNm2dX2UKGgGaAloD0MISGsMOmEogMCUhpRSlGgVS4xoFkdAjB06yKNyYHV9lChoBmgJaA9DCHJtqBjn23nAlIaUUpRoFUs8aBZHQIwh1et0V8F1fZQoaAZoCWgPQwhgP8QGy3J1wJSGlFKUaBVNLQFoFkdAjCca99MK1HV9lChoBmgJaA9DCBfZzvfzkIDAlIaUUpRoFUuQaBZHQIwoDWK/Efl1fZQoaAZoCWgPQwhaLEXyNQOBwJSGlFKUaBVLwmgWR0CMLuJWvKU3dX2UKGgGaAloD0MImzi53wGQgMCUhpRSlGgVS5xoFkdAjDagoXsPa3V9lChoBmgJaA9DCN16TQ+KUoDAlIaUUpRoFUusaBZHQIw3ET6BRQ91fZQoaAZoCWgPQwjtvI3NLpOAwJSGlFKUaBVLgGgWR0CMOy5FPSDzdX2UKGgGaAloD0MIFJM3wEzlecCUhpRSlGgVSzxoFkdAjDyu27Wd3HV9lChoBmgJaA9DCNKrAUpD0YDAlIaUUpRoFU0jAWgWR0CMPVUhFEy+dX2UKGgGaAloD0MIahfTTHfsesCUhpRSlGgVS0doFkdAjETbZnL7oHV9lChoBmgJaA9DCBR2UfRAEIDAlIaUUpRoFUuFaBZHQIxJWXqqwQl1fZQoaAZoCWgPQwjKwtfXGsaAwJSGlFKUaBVLsWgWR0CMSabiqABldX2UKGgGaAloD0MI8RExJTI3gcCUhpRSlGgVS7NoFkdAjE85NwiqyXV9lChoBmgJaA9DCLd546SQX4DAlIaUUpRoFUufaBZHQIxZvwiJO351fZQoaAZoCWgPQwjZCS/BScmAwJSGlFKUaBVLy2gWR0CMWcNKAavSdX2UKGgGaAloD0MIRkWcTlJEgcCUhpRSlGgVS9JoFkdAjF3FRxcVxnV9lChoBmgJaA9DCDz2s1jqOYDAlIaUUpRoFUuYaBZHQIxeBV0cOsl1fZQoaAZoCWgPQwi+huC4jKN8wJSGlFKUaBVLUWgWR0CMZQiAUcn3dX2UKGgGaAloD0MIG7yvyoWmfMCUhpRSlGgVS3BoFkdAjGgQkX1rZnV9lChoBmgJaA9DCJFCWfgaDIHAlIaUUpRoFUu2aBZHQIxpn225QP91fZQoaAZoCWgPQwgBMnTsIH9/wJSGlFKUaBVLiGgWR0CMccAZsKsudX2UKGgGaAloD0MI8mH2sq2GgcCUhpRSlGgVTRsBaBZHQIxzuVPepGZ1fZQoaAZoCWgPQwjElEii1zJ+wJSGlFKUaBVLaWgWR0CMdAPeYUnHdX2UKGgGaAloD0MIRKZ8CCpZfMCUhpRSlGgVS1hoFkdAjHyN+CsfaHV9lChoBmgJaA9DCNOgaB6AvX/AlIaUUpRoFUtdaBZHQIx8optrKvF1fZQoaAZoCWgPQwjpfk5BHq2AwJSGlFKUaBVLjWgWR0CMf1S6UaAGdX2UKGgGaAloD0MIQWFQphFHfsCUhpRSlGgVS/xoFkdAjH/rHEMspXV9lChoBmgJaA9DCBiyutWzp37AlIaUUpRoFUtfaBZHQIyDjXFtKqZ1fZQoaAZoCWgPQwiUwVHyStuAwJSGlFKUaBVLjGgWR0CMht6ol2NedX2UKGgGaAloD0MIglfLnZmzf8CUhpRSlGgVS3ZoFkdAjIflyq+8G3V9lChoBmgJaA9DCK3aNSHt+3zAlIaUUpRoFUuEaBZHQIyIJ5ooNNJ1fZQoaAZoCWgPQwi+Ed2zLlqBwJSGlFKUaBVLrWgWR0CMkHh3qzJIdX2UKGgGaAloD0MINxsrMe/hgMCUhpRSlGgVS7VoFkdAjJaT/p+tsHV9lChoBmgJaA9DCFsJ3SURpoDAlIaUUpRoFUvRaBZHQIyXHffoA4p1fZQoaAZoCWgPQwjKwWwCLFOBwJSGlFKUaBVNFwFoFkdAjJ94Yzi0fHV9lChoBmgJaA9DCEcDeAtEgoDAlIaUUpRoFUtgaBZHQIygd+I/JNl1fZQoaAZoCWgPQwgxXYjV/56AwJSGlFKUaBVLiWgWR0CMo91vES/TdX2UKGgGaAloD0MIrYia6LMLf8CUhpRSlGgVS05oFkdAjKd5W7voeXV9lChoBmgJaA9DCHhEhepmwX7AlIaUUpRoFUtPaBZHQIyoiBmPHT91fZQoaAZoCWgPQwidnKG4o9h5wJSGlFKUaBVLNWgWR0CMqZRbbDdhdX2UKGgGaAloD0MIm+PcJtxYf8CUhpRSlGgVTSEBaBZHQIysSVGCqZN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc645e91b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc645e9240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc645e92d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc645e9360>", "_build": "<function ActorCriticPolicy._build at 0x7fdc645e93f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc645e9480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc645e9510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc645e95a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc645e9630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc645e96c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc645e9750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc645e97e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc645de080>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681933361125072580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAMjLaUPldD6/7FAxQgAAyEJT/iNC32A2QlARkkIAAMhCAADIQoacX0LeQ61CaDmNP1fGu0EAAMhCAADIQgAAyEIAAMhCsGF3QlGloUESxYVBa5l6Q2Cq/74AAMhCAABIQgAAIELYOJBCAABwQgAAyEIAAMhC2DiQQti4YEPKN+2+AADIQgAAyEIAACBCAABIQgAAtEIAAMhClry9Qtg4EEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1lJA2l9dlMCUhpRSlIwBbJRNLQGMAXSUR0CK0HtfoicHdX2UKGgGaAloD0MIAYqRJTOPfsCUhpRSlGgVS2xoFkdAitd4Kx9oe3V9lChoBmgJaA9DCASqfxBpd4DAlIaUUpRoFUvfaBZHQIrca08eS0V1fZQoaAZoCWgPQwhZh6OrFBGYwJSGlFKUaBVNLQFoFkdAiuT+40/GEXV9lChoBmgJaA9DCOULWkigyIDAlIaUUpRoFUvQaBZHQIroOdXko4N1fZQoaAZoCWgPQwgN4C2QwHmAwJSGlFKUaBVLsWgWR0CK6yUbkwN9dX2UKGgGaAloD0MIELHBwqkfgMCUhpRSlGgVS7FoFkdAiu4jxkNF0HV9lChoBmgJaA9DCDyInSk0mYDAlIaUUpRoFUunaBZHQIr560fHPu51fZQoaAZoCWgPQwixwFd0+xiUwJSGlFKUaBVNLQFoFkdAiv3bhegL7XV9lChoBmgJaA9DCHfYRGauAIDAlIaUUpRoFUsxaBZHQIr/T9fkWAR1fZQoaAZoCWgPQwi0O6QYAImUwJSGlFKUaBVNLQFoFkdAiwEtTcZccHV9lChoBmgJaA9DCJojK7+MvonAlIaUUpRoFU0tAWgWR0CLBRVQyhzvdX2UKGgGaAloD0MIsyWrIpy1fMCUhpRSlGgVS5loFkdAixAv+OwPiHV9lChoBmgJaA9DCK29T1XB44DAlIaUUpRoFU0TAWgWR0CLINyHVPN3dX2UKGgGaAloD0MIVn2utiLiicCUhpRSlGgVTS0BaBZHQIsl/HzYmLN1fZQoaAZoCWgPQwimnC/2XmaBwJSGlFKUaBVNGAFoFkdAiydi4Bmwq3V9lChoBmgJaA9DCFUUr7KWTpbAlIaUUpRoFU0tAWgWR0CLN6VwgkkbdX2UKGgGaAloD0MIWRmNfN7cgMCUhpRSlGgVS9doFkdAiz7BKtga33V9lChoBmgJaA9DCPxx++VTU4DAlIaUUpRoFUusaBZHQIs/p8v24/h1fZQoaAZoCWgPQwiojH+fcV5+wJSGlFKUaBVL7GgWR0CLRulHBk7PdX2UKGgGaAloD0MICVT/IHKggMCUhpRSlGgVS0loFkdAi0i6q814xHV9lChoBmgJaA9DCH+IDRbOb3zAlIaUUpRoFUtKaBZHQItJ0tAcDKZ1fZQoaAZoCWgPQwj3WPrQJcWAwJSGlFKUaBVL5mgWR0CLVDluFYdRdX2UKGgGaAloD0MIoidlUoOMfMCUhpRSlGgVS6toFkdAi1lPPTodMnV9lChoBmgJaA9DCI6s/DJY3H7AlIaUUpRoFUuTaBZHQItfnZAY51h1fZQoaAZoCWgPQwjFAfT7nl6AwJSGlFKUaBVLc2gWR0CLYZMEA5q/dX2UKGgGaAloD0MI0Qg2ro/Hk8CUhpRSlGgVTS0BaBZHQIthrBfrrxB1fZQoaAZoCWgPQwgs2EY8+aORwJSGlFKUaBVNLQFoFkdAi2LaiCaqj3V9lChoBmgJaA9DCIfe4uE9Hn3AlIaUUpRoFUtdaBZHQItoyBiCrcV1fZQoaAZoCWgPQwj52F2gBFOAwJSGlFKUaBVNGwFoFkdAi7EUrK/203V9lChoBmgJaA9DCMxB0NF6EZHAlIaUUpRoFU0tAWgWR0CLtWPdVNpNdX2UKGgGaAloD0MIueLiqFxWf8CUhpRSlGgVSzFoFkdAi7WAmAskIHV9lChoBmgJaA9DCAzlRLua65DAlIaUUpRoFU0tAWgWR0CLtZZL7GeddX2UKGgGaAloD0MIvVKWIQ4mgMCUhpRSlGgVS75oFkdAi7XzZg5R0nV9lChoBmgJaA9DCHtKzon9j37AlIaUUpRoFUsWaBZHQIu3dqxkd3l1fZQoaAZoCWgPQwiOdAZGHrR+wJSGlFKUaBVLG2gWR0CLuVv1DjR2dX2UKGgGaAloD0MIDYy8rMkTgMCUhpRSlGgVS0doFkdAi7ttLcsUZnV9lChoBmgJaA9DCKhRSDJrkX/AlIaUUpRoFUs+aBZHQIu/Gkk8ifR1fZQoaAZoCWgPQwjzkZT0sAV+wJSGlFKUaBVLD2gWR0CLwEID5j6OdX2UKGgGaAloD0MImlyMgTWxgcCUhpRSlGgVS4doFkdAi8EQblzU7XV9lChoBmgJaA9DCKWeBaG8i4HAlIaUUpRoFUufaBZHQIvDgmLLpzN1fZQoaAZoCWgPQwiISE27+IWBwJSGlFKUaBVLf2gWR0CLy4FyJbdKdX2UKGgGaAloD0MI/YNIhpyugcCUhpRSlGgVS59oFkdAi9G46nzg/HV9lChoBmgJaA9DCLiwbry7l37AlIaUUpRoFUsVaBZHQIvTY1WKdhB1fZQoaAZoCWgPQwijXBq/gKSUwJSGlFKUaBVNLQFoFkdAi9XmBFuvU3V9lChoBmgJaA9DCJ56pMEtf4DAlIaUUpRoFUuHaBZHQIvXWNaQmu11fZQoaAZoCWgPQwh1j2yuWql+wJSGlFKUaBVLHGgWR0CL2CNOM2m6dX2UKGgGaAloD0MIIv32dVA3lsCUhpRSlGgVTS0BaBZHQIvZ/OY6XBx1fZQoaAZoCWgPQwiZhAt5BHt/wJSGlFKUaBVLJmgWR0CL29JCBwuNdX2UKGgGaAloD0MIxebj2nDFgMCUhpRSlGgVS1ZoFkdAi9xLZamoBXV9lChoBmgJaA9DCLfu5qlurJfAlIaUUpRoFU0tAWgWR0CL5PM+NcW1dX2UKGgGaAloD0MItRmnIYqEgsCUhpRSlGgVS8poFkdAi+cAvlEJB3V9lChoBmgJaA9DCKoKDcRSNZrAlIaUUpRoFU0tAWgWR0CL6C5d4VyndX2UKGgGaAloD0MIJxb4ig6LicCUhpRSlGgVTS0BaBZHQIvw0Wl/H5t1fZQoaAZoCWgPQwiocASp9JOAwJSGlFKUaBVLhGgWR0CL8viPQv6CdX2UKGgGaAloD0MIW9JRDuabfsCUhpRSlGgVSxxoFkdAi/NRhUipvXV9lChoBmgJaA9DCKK1os1xoX/AlIaUUpRoFUsfaBZHQIv2AfCAMDx1fZQoaAZoCWgPQwiEg72J4bp+wJSGlFKUaBVLH2gWR0CL+S93bEgodX2UKGgGaAloD0MIOLwgIhUQgsCUhpRSlGgVS9JoFkdAi/tZv99+gHV9lChoBmgJaA9DCIcahSRjwprAlIaUUpRoFU0tAWgWR0CMABTspobodX2UKGgGaAloD0MIiEojZlYkgMCUhpRSlGgVS1NoFkdAjAEA6EJ0GXV9lChoBmgJaA9DCHRGlPamSoDAlIaUUpRoFUs+aBZHQIwBl3r2QGR1fZQoaAZoCWgPQwg1DYrmgeZ+wJSGlFKUaBVLG2gWR0CMAwD2alUIdX2UKGgGaAloD0MIwCZr1IMOfsCUhpRSlGgVSw9oFkdAjATCDVYp2HV9lChoBmgJaA9DCLdCWI3lOYDAlIaUUpRoFUtPaBZHQIwJr0jC53F1fZQoaAZoCWgPQwjN59ztOiqawJSGlFKUaBVNLQFoFkdAjBDzZHuqm3V9lChoBmgJaA9DCLPr3oqEXHzAlIaUUpRoFUuGaBZHQIwWtsi0OVh1fZQoaAZoCWgPQwgXSFD8WEp+wJSGlFKUaBVLEGgWR0CMGGNYKYzBdX2UKGgGaAloD0MIyCWOPFD4g8CUhpRSlGgVS+BoFkdAjBqlzMibD3V9lChoBmgJaA9DCJI7bCITs4DAlIaUUpRoFUtraBZHQIwbsAksz2x1fZQoaAZoCWgPQwh646QwLzl/wJSGlFKUaBVLJmgWR0CMHmgVXV9XdX2UKGgGaAloD0MIeZRKeDJLl8CUhpRSlGgVTS0BaBZHQIwe5YzSCvp1fZQoaAZoCWgPQwhxytx8I+l/wJSGlFKUaBVLNWgWR0CMISRDkU9IdX2UKGgGaAloD0MI+vAsQUYyf8CUhpRSlGgVSyVoFkdAjCTSQHRkVnV9lChoBmgJaA9DCFacai0Msn7AlIaUUpRoFUsdaBZHQIwn5Jul41R1fZQoaAZoCWgPQwgaaam8XZF+wJSGlFKUaBVLGWgWR0CMKv5AQg9vdX2UKGgGaAloD0MIyqZc4V30gcCUhpRSlGgVS4VoFkdAjC0oqTbFj3V9lChoBmgJaA9DCAzKNJqc5X/AlIaUUpRoFUswaBZHQIwwXdCVryl1fZQoaAZoCWgPQwg7yOvBZA1/wJSGlFKUaBVLImgWR0CMNCEr5IpZdX2UKGgGaAloD0MISUikbXyJmcCUhpRSlGgVTS0BaBZHQIw5TM9r4351fZQoaAZoCWgPQwhkIToEjqt+wJSGlFKUaBVLlmgWR0CMPjsoDxLCdX2UKGgGaAloD0MI5DCYv4JYf8CUhpRSlGgVSzNoFkdAjD89Xko4MnV9lChoBmgJaA9DCAQ91LZhRn7AlIaUUpRoFUsLaBZHQIxAC+UQkHF1fZQoaAZoCWgPQwj/0MyTa4iXwJSGlFKUaBVNLQFoFkdAjEBMr3CbdHV9lChoBmgJaA9DCCB9k6aB037AlIaUUpRoFUsaaBZHQIxAkbPyCnR1fZQoaAZoCWgPQwjU1ohgnOR+wJSGlFKUaBVLJmgWR0CMREGqPwNLdX2UKGgGaAloD0MIy4XKv5ZDf8CUhpRSlGgVSytoFkdAjEVRRl6JInV9lChoBmgJaA9DCBYUBmXau4DAlIaUUpRoFUu5aBZHQIxIzHhjvux1fZQoaAZoCWgPQwiGVbyReWGAwJSGlFKUaBVLbWgWR0CMTIwDeTFEdX2UKGgGaAloD0MInwH1ZnTrgMCUhpRSlGgVS0xoFkdAjE/TYmLLp3V9lChoBmgJaA9DCLQFhNZDun7AlIaUUpRoFUsdaBZHQIxR9RxcVxl1fZQoaAZoCWgPQwg1tAHYYBaAwJSGlFKUaBVLR2gWR0CMWFfVI7NjdX2UKGgGaAloD0MIz6Chf4LzgcCUhpRSlGgVS+toFkdAjFsaDoQnQnV9lChoBmgJaA9DCPVnP1IEO37AlIaUUpRoFUsOaBZHQIxcXMMZxaR1fZQoaAZoCWgPQwhhNCvbRzCdwJSGlFKUaBVNLQFoFkdAjGB0W/JvHnV9lChoBmgJaA9DCEt1AS/DlpXAlIaUUpRoFU0tAWgWR0CMaUhbGFSLdX2UKGgGaAloD0MIAVEwY0otgMCUhpRSlGgVS1ZoFkdAjGrTdLxqf3V9lChoBmgJaA9DCMaLhSFyt4DAlIaUUpRoFUuJaBZHQIxsIWBSUC91fZQoaAZoCWgPQwigUE8fQTh+wJSGlFKUaBVLCmgWR0CMbC0/GEPEdX2UKGgGaAloD0MInBcnvhoPf8CUhpRSlGgVSxpoFkdAjGy6q814xHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77a0fc715579326fa4257251701a9887195187441c32796198a6e936dc7dee48
|
3 |
+
size 680226
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1035.2234638977047, "std_reward": 2.2737367544323206e-13, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T12:58:20.847854"}
|