Upload model to Hugging Face
Browse files- BC-harcodemap-punish-stagnant.zip +2 -2
- BC-harcodemap-punish-stagnant/data +17 -17
- BC-harcodemap-punish-stagnant/policy.optimizer.pth +1 -1
- BC-harcodemap-punish-stagnant/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
BC-harcodemap-punish-stagnant.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb24964149f4372e23c2475223e71e207cd138af20fdab40e704de1478d904f6
|
3 |
+
size 44151
|
BC-harcodemap-punish-stagnant/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -78,7 +78,7 @@
|
|
78 |
},
|
79 |
"_n_updates": 250,
|
80 |
"n_steps": 2048,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0001,
|
84 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2928f5240>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2928f52d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2928f5360>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2928f53f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa2928f5480>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa2928f5510>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2928f55a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2928f5630>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa2928f56c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2928f5750>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2928f57e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2928f5870>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa2928e9bc0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681928884688037255,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAABJD5ELMQjFA6Qk0QlZqe0IAAMhCAADIQvINnEIz1FhCAADIQi+HIkLhd+lCi0abPwAAyEL0Ix9CBFgsQuCRcEIAAMhCAADIQqxtkkIBrmNCSjrtQqYmMj5BrWtCAADIQgeYJ0Ktlh1C2o5oQlyng0IAAMhCAADIQj1160IyR6g/ySxWQuI2I0LCUj5CMfSBQgAAyEIAAMhCMweUQmyDaUKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.02400000000000002,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInSy13i/Bd8CUhpRSlIwBbJRNLQGMAXSUR0CGEy4axX4kdX2UKGgGaAloD0MICi/BqQ8feMCUhpRSlGgVTS0BaBZHQIYVkUqQRwt1fZQoaAZoCWgPQwhCl3DobZt4wJSGlFKUaBVNLQFoFkdAhhziyyD7InV9lChoBmgJaA9DCGtJRzkYfnjAlIaUUpRoFU0tAWgWR0CGHt6GgzxgdX2UKGgGaAloD0MIzse1oWJ/d8CUhpRSlGgVTS0BaBZHQIYvYIQe3hJ1fZQoaAZoCWgPQwhSmPc4E513wJSGlFKUaBVNLQFoFkdAhjI4H5aePXV9lChoBmgJaA9DCE0Ttp/MUnjAlIaUUpRoFU0tAWgWR0CGOoilBQendX2UKGgGaAloD0MIRWPt7yyHd8CUhpRSlGgVTS0BaBZHQIY9RRGc4HZ1fZQoaAZoCWgPQwinsb0WtL54wJSGlFKUaBVNLQFoFkdAhk+hAOavzXV9lChoBmgJaA9DCDl9PV+zHHjAlIaUUpRoFU0tAWgWR0CGUufCAMDwdX2UKGgGaAloD0MIxO47hsf1d8CUhpRSlGgVTS0BaBZHQIZbU/D+BH11fZQoaAZoCWgPQwhVo1cD1Ct4wJSGlFKUaBVNLQFoFkdAhlyuyVv/BHV9lChoBmgJaA9DCNBDbRtGQ3jAlIaUUpRoFU0tAWgWR0CGbjb+tKZldX2UKGgGaAloD0MIRPrt68CAeMCUhpRSlGgVTS0BaBZHQIZxVfXwsoV1fZQoaAZoCWgPQwh0XfjBObN4wJSGlFKUaBVNLQFoFkdAhnlSY5T6znV9lChoBmgJaA9DCKmieJV1HnjAlIaUUpRoFU0tAWgWR0CGfBQcghbGdX2UKGgGaAloD0MILPGAsqkoeMCUhpRSlGgVTS0BaBZHQIaP9lkH2RJ1fZQoaAZoCWgPQwgFvw0xHtR3wJSGlFKUaBVNLQFoFkdAhpPGIbfgrHV9lChoBmgJaA9DCMNEgxR8b3jAlIaUUpRoFU0tAWgWR0CGnH73wkPddX2UKGgGaAloD0MIIQa69sUCeMCUhpRSlGgVTS0BaBZHQIbm/4wh4dJ1fZQoaAZoCWgPQwiU3czoR2Z4wJSGlFKUaBVNLQFoFkdAhvLiXQdCFHV9lChoBmgJaA9DCPeUnBO7DnnAlIaUUpRoFU0tAWgWR0CG9PtTkyULdX2UKGgGaAloD0MIjrJ+M/Had8CUhpRSlGgVTS0BaBZHQIb7yPhhpg11fZQoaAZoCWgPQwgFhxdEJJt4wJSGlFKUaBVNLQFoFkdAhv07CJoCdXV9lChoBmgJaA9DCL9H/fUKJnjAlIaUUpRoFU0tAWgWR0CHDHdCVryldX2UKGgGaAloD0MIlIjwL8IOecCUhpRSlGgVTS0BaBZHQIcPIF9roGJ1fZQoaAZoCWgPQwhfQC/cOZN3wJSGlFKUaBVNLQFoFkdAhxZf4AS39nV9lChoBmgJaA9DCPqXpDJFJnjAlIaUUpRoFU0tAWgWR0CHGKyZa3ZxdX2UKGgGaAloD0MIhxiveVWveMCUhpRSlGgVTS0BaBZHQIcqR20Re1N1fZQoaAZoCWgPQwiB0eXNoWd3wJSGlFKUaBVNLQFoFkdAhyxwemvW6XV9lChoBmgJaA9DCPwBDwwghXjAlIaUUpRoFU0tAWgWR0CHNBEkSmIkdX2UKGgGaAloD0MIhxiveVWveMCUhpRSlGgVTS0BaBZHQIc2UnXumaZ1fZQoaAZoCWgPQwjkLVc/tup2wJSGlFKUaBVNLQFoFkdAh0cOgYgq3HV9lChoBmgJaA9DCF6hD5axeHjAlIaUUpRoFU0tAWgWR0CHShO5avA5dX2UKGgGaAloD0MIR6zFp4AgeMCUhpRSlGgVTS0BaBZHQIdR2bobGWF1fZQoaAZoCWgPQwiGrdnKy3N4wJSGlFKUaBVNLQFoFkdAh1Qxri2lVXV9lChoBmgJaA9DCIcYr3lVr3jAlIaUUpRoFU0tAWgWR0CHY7Y9Pk7wdX2UKGgGaAloD0MIbCOe7KYpeMCUhpRSlGgVTS0BaBZHQIdl6vNeMQ51fZQoaAZoCWgPQwgZ4lgXd1p4wJSGlFKUaBVNLQFoFkdAh2ydK/VRUHV9lChoBmgJaA9DCBtl/WZib3jAlIaUUpRoFU0tAWgWR0CHbhFfAsTWdX2UKGgGaAloD0MIvHX+7bIweMCUhpRSlGgVTS0BaBZHQId/5/7SApd1fZQoaAZoCWgPQwg65jxjH4V4wJSGlFKUaBVNLQFoFkdAh4L1nuiN83V9lChoBmgJaA9DCLkXmBWKNHjAlIaUUpRoFU0tAWgWR0CHi4F+uvECdX2UKGgGaAloD0MIuJBHcOM5eMCUhpRSlGgVTS0BaBZHQIeOQiFCb+d1fZQoaAZoCWgPQwhjKv2Es7h3wJSGlFKUaBVNLQFoFkdAh6ACD/VAiXV9lChoBmgJaA9DCPJ5xVOPpnfAlIaUUpRoFU0tAWgWR0CHo2AZKnNxdX2UKGgGaAloD0MIXALwT+lteMCUhpRSlGgVTS0BaBZHQIfkD1mJ3xF1fZQoaAZoCWgPQwghWcAE7sd4wJSGlFKUaBVNLQFoFkdAh+XQk5ZKWnV9lChoBmgJaA9DCM0d/S8X2HfAlIaUUpRoFU0tAWgWR0CH9MAf+0gKdX2UKGgGaAloD0MIt88qM+W3eMCUhpRSlGgVTS0BaBZHQIf3g9/z8P51fZQoaAZoCWgPQwio5QeucnB3wJSGlFKUaBVNLQFoFkdAh/7o+fRNRHV9lChoBmgJaA9DCL7Ye/HF+HfAlIaUUpRoFU0tAWgWR0CIAW97F85TdX2UKGgGaAloD0MIu9Vz0vvCeMCUhpRSlGgVTS0BaBZHQIgTmicoYvZ1fZQoaAZoCWgPQwjEeqNW2AB4wJSGlFKUaBVNLQFoFkdAiBXv9cbBGnV9lChoBmgJaA9DCEW5NH7hDHjAlIaUUpRoFU0tAWgWR0CIHRCojv/jdX2UKGgGaAloD0MINIEiFvE7d8CUhpRSlGgVTS0BaBZHQIgffMnqmj11fZQoaAZoCWgPQwjpgY/Bilp4wJSGlFKUaBVNLQFoFkdAiDJVU+9rXXV9lChoBmgJaA9DCAJiEi7kIHjAlIaUUpRoFU0tAWgWR0CINYMF2V3VdX2UKGgGaAloD0MIEqERbFxseMCUhpRSlGgVTS0BaBZHQIg/MtTUAkt1fZQoaAZoCWgPQwjMft3pDih3wJSGlFKUaBVNLQFoFkdAiEIyS/0ulHV9lChoBmgJaA9DCAGnd/H+RHfAlIaUUpRoFU0tAWgWR0CIU2pe/pMYdX2UKGgGaAloD0MInGuYoTE2eMCUhpRSlGgVTS0BaBZHQIhWUxj8UEh1fZQoaAZoCWgPQwgUJoxmJWZ3wJSGlFKUaBVNLQFoFkdAiF9agVXV9XV9lChoBmgJaA9DCBvV6UBWwnjAlIaUUpRoFU0tAWgWR0CIYicRUWEcdX2UKGgGaAloD0MIiEm4kAdBd8CUhpRSlGgVTS0BaBZHQIh0zPdEb5x1fZQoaAZoCWgPQwhaZDvfD/h3wJSGlFKUaBVNLQFoFkdAiHeJiiItUXV9lChoBmgJaA9DCGstzEJ7enjAlIaUUpRoFU0tAWgWR0CIgEiMYMvzdX2UKGgGaAloD0MIi21S0VjZd8CUhpRSlGgVTS0BaBZHQIiC+/5+H8F1fZQoaAZoCWgPQwh96lil9CN3wJSGlFKUaBVNLQFoFkdAiJTKgRK6F3V9lChoBmgJaA9DCPSKpx7py3fAlIaUUpRoFU0tAWgWR0CImBksjFAFdX2UKGgGaAloD0MIJhsPttg3eMCUhpRSlGgVTS0BaBZHQIigDcKw6hh1fZQoaAZoCWgPQwjJIeLmFHB4wJSGlFKUaBVNLQFoFkdAiKKU1qFh5XV9lChoBmgJaA9DCP6arFGPoHfAlIaUUpRoFU0tAWgWR0CItgn+AEt/dX2UKGgGaAloD0MIgc8PI0QXeMCUhpRSlGgVTS0BaBZHQIkB6gM+eOJ1fZQoaAZoCWgPQwiHvyZrlJp4wJSGlFKUaBVNLQFoFkdAiQqTOPeYUnV9lChoBmgJaA9DCDs0LEYdvnfAlIaUUpRoFU0tAWgWR0CJDWqbSZ0CdX2UKGgGaAloD0MIs193ujN5d8CUhpRSlGgVTS0BaBZHQIkgpuQ6p5x1fZQoaAZoCWgPQwjjT1Q2rId3wJSGlFKUaBVNLQFoFkdAiSPUVBUrCnV9lChoBmgJaA9DCFpmEYptNXjAlIaUUpRoFU0tAWgWR0CJK+lxffGddX2UKGgGaAloD0MIVOV7RiKseMCUhpRSlGgVTS0BaBZHQIkuMCvHLid1fZQoaAZoCWgPQwiUaTS5mPZ2wJSGlFKUaBVNLQFoFkdAiT19nCfpU3V9lChoBmgJaA9DCHfc8Ltp3XfAlIaUUpRoFU0tAWgWR0CJQC0Nz8xcdX2UKGgGaAloD0MI1bFK6dkSeMCUhpRSlGgVTS0BaBZHQIlHFPi1iON1fZQoaAZoCWgPQwh2MjhKXnd3wJSGlFKUaBVNLQFoFkdAiUkp8OTaCnV9lChoBmgJaA9DCHPzjejeQ3jAlIaUUpRoFU0tAWgWR0CJWW67NB4VdX2UKGgGaAloD0MIw2UVNgP7d8CUhpRSlGgVTS0BaBZHQIlc1Yp2ECh1fZQoaAZoCWgPQwg1ecpq+sF3wJSGlFKUaBVNLQFoFkdAiWSsjeKsMnV9lChoBmgJaA9DCJPkub5PWHjAlIaUUpRoFU0tAWgWR0CJZtZOBUaRdX2UKGgGaAloD0MI4Gky4+16d8CUhpRSlGgVTS0BaBZHQIl2QCCBf8d1fZQoaAZoCWgPQwiQ+YBA59B3wJSGlFKUaBVNLQFoFkdAiXh4nF5v+HV9lChoBmgJaA9DCKYKRiX19nfAlIaUUpRoFU0tAWgWR0CJfwO3lS0jdX2UKGgGaAloD0MIaTaPw2B4eMCUhpRSlGgVTS0BaBZHQImBhz5oGpx1fZQoaAZoCWgPQwgKgPEMWnB4wJSGlFKUaBVNLQFoFkdAiZKcpLEk0XV9lChoBmgJaA9DCBu+hXVjxXjAlIaUUpRoFU0tAWgWR0CJldkQPI4mdX2UKGgGaAloD0MIQgWHF4TmeMCUhpRSlGgVTS0BaBZHQImekKPXCj11fZQoaAZoCWgPQwjmrboOlfZ3wJSGlFKUaBVNLQFoFkdAiaETAN5MUXV9lChoBmgJaA9DCJAUkWGVhHjAlIaUUpRoFU0tAWgWR0CJsGUM5OrRdX2UKGgGaAloD0MIU+qScUzLdsCUhpRSlGgVTS0BaBZHQImy1NnGsFN1fZQoaAZoCWgPQwixxAPKJoJ3wJSGlFKUaBVNLQFoFkdAiboHLaEi+3V9lChoBmgJaA9DCEzEW+cffHjAlIaUUpRoFU0tAWgWR0CJu/cHGCI2dWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"_n_updates": 250,
|
80 |
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
83 |
"ent_coef": 0.0001,
|
84 |
"vf_coef": 0.5,
|
BC-harcodemap-punish-stagnant/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b8b7a988362120763cc8055ccbca764649c058999722e1ed35e8e75b81d0d94
|
3 |
size 18973
|
BC-harcodemap-punish-stagnant/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f461f021a953dd3052f94ac4943b5c816661382f1665ce149dae830b56f722dc
|
3 |
size 9295
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: RoombaAToB-harcodemap-punish-stagnant
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -106.05 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4608ef9240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4608ef92d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4608ef9360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4608ef93f0>", "_build": "<function ActorCriticPolicy._build at 0x7f4608ef9480>", "forward": "<function ActorCriticPolicy.forward at 0x7f4608ef9510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4608ef95a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4608ef9630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4608ef96c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4608ef9750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4608ef97e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4608ef9870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4608ee9ec0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681928005142218419, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAES42UIBA84/AADIQknkkUIAAMhCAADIQgAAyELHsqdCByGJQpB3oEJAAuRC7yXuPwAAyEIAAMhCAADIQgAAyEKd4G1CAADIQoX/cUIAAMhCD2bPQl66vD9jNrJCWFFfQoCOZ0JDsa9CAADIQsWawUIAAMhCAADIQm55hkIF6uk/AADIQg4trULOppdCAADIQgAAyEKHzsFCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkNeDSfHpb8CUhpRSlIwBbJRNLQGMAXSUR0CGDdI3BHkMdX2UKGgGaAloD0MITRHg9A6agsCUhpRSlGgVS4loFkdAhhlcUEgW8HV9lChoBmgJaA9DCI4G8BborILAlIaUUpRoFUuNaBZHQIYc/vv0AcV1fZQoaAZoCWgPQwiUpGsmP4iCwJSGlFKUaBVLiGgWR0CGHVudf9gndX2UKGgGaAloD0MIyLJg4u8egsCUhpRSlGgVS3VoFkdAhiekHUtqYnV9lChoBmgJaA9DCGmrksj+L4bAlIaUUpRoFUvraBZHQIYp0ebNKRN1fZQoaAZoCWgPQwgJNxlVBiKBwJSGlFKUaBVLwGgWR0CGMPTwUg0TdX2UKGgGaAloD0MI6X5OQT4bgsCUhpRSlGgVS5FoFkdAhjWWZqmCRXV9lChoBmgJaA9DCM1Zn3Ls94LAlIaUUpRoFUuLaBZHQIY2yvs7dSF1fZQoaAZoCWgPQwj6YBkbOmpjwJSGlFKUaBVNLQFoFkdAhj1fpMYdhnV9lChoBmgJaA9DCFfMCG9vUYLAlIaUUpRoFUt5aBZHQIY+OK8+Ro11fZQoaAZoCWgPQwiY/E/+bkCDwJSGlFKUaBVLrGgWR0CGUOaDwpfAdX2UKGgGaAloD0MIuVM6WH+yZMCUhpRSlGgVTS0BaBZHQIZYBAQg9vF1fZQoaAZoCWgPQwgKoBhZsgplwJSGlFKUaBVNLQFoFkdAhll8p9ZzP3V9lChoBmgJaA9DCDT4+8XMDoPAlIaUUpRoFUuBaBZHQIZe4ID5j6N1fZQoaAZoCWgPQwgvNNdppDxkwJSGlFKUaBVNLQFoFkdAhl9+u/1xsHV9lChoBmgJaA9DCMe5Tbi36IHAlIaUUpRoFUtuaBZHQIZhShzvJBB1fZQoaAZoCWgPQwgSo+cW2hyCwJSGlFKUaBVLf2gWR0CGZqfywwCbdX2UKGgGaAloD0MIBwlRvuCJhcCUhpRSlGgVS9poFkdAhmg42S+xnnV9lChoBmgJaA9DCDs0LEadv4XAlIaUUpRoFUvxaBZHQIZuV4/u9e11fZQoaAZoCWgPQwgC8E+pklaCwJSGlFKUaBVLcGgWR0CGbw7yQPqcdX2UKGgGaAloD0MIyogLQCPhYsCUhpRSlGgVTS0BaBZHQIZ3xQSBbwB1fZQoaAZoCWgPQwg+eO3SxteBwJSGlFKUaBVLbWgWR0CGeUwosqaxdX2UKGgGaAloD0MI0sYRa7GggsCUhpRSlGgVS4hoFkdAhnvB0p3HJnV9lChoBmgJaA9DCGajc34K/ITAlIaUUpRoFU0jAWgWR0CGgyx4Y77sdX2UKGgGaAloD0MIqnzPSGQ6gMCUhpRSlGgVS7toFkdAhor2JrLyMHV9lChoBmgJaA9DCDBjCtZY6oPAlIaUUpRoFUuhaBZHQIaTdQuVX3h1fZQoaAZoCWgPQwhxdQDEHVCBwJSGlFKUaBVLX2gWR0CGlJtG/etTdX2UKGgGaAloD0MI5geu8oRzbMCUhpRSlGgVTS0BaBZHQIaYlHFxXGR1fZQoaAZoCWgPQwgvih74GGtmwJSGlFKUaBVNLQFoFkdAhpsIJZ4fOnV9lChoBmgJaA9DCONV1jblHYPAlIaUUpRoFUuCaBZHQIajXkFOful1fZQoaAZoCWgPQwhTW+ogTw+DwJSGlFKUaBVLlmgWR0CG5+zN2TxHdX2UKGgGaAloD0MIZ2X7kLcqgsCUhpRSlGgVS4doFkdAhu5Si22G7HV9lChoBmgJaA9DCCeh9IUQBmfAlIaUUpRoFU0tAWgWR0CG8OqZML4OdX2UKGgGaAloD0MII0vmWN6Db8CUhpRSlGgVTS0BaBZHQIb3iSq2jO91fZQoaAZoCWgPQwiSIFwBZc+BwJSGlFKUaBVLbmgWR0CG+tcyFfzCdX2UKGgGaAloD0MIIm5OJUPOgcCUhpRSlGgVS4FoFkdAhwEJFkQPJHV9lChoBmgJaA9DCDRIwVNIkmLAlIaUUpRoFU0tAWgWR0CHAQqNp/PPdX2UKGgGaAloD0MILzIBv0baYMCUhpRSlGgVTS0BaBZHQIcIakZaV2R1fZQoaAZoCWgPQwi0W8tk+BKCwJSGlFKUaBVLjGgWR0CHDgB6KLsKdX2UKGgGaAloD0MIwtoYO+EKX8CUhpRSlGgVTS0BaBZHQIcUbnied091fZQoaAZoCWgPQwj5LM+Du2RpwJSGlFKUaBVNLQFoFkdAhxv/iYLLIXV9lChoBmgJaA9DCAYv+grSKVrAlIaUUpRoFU0tAWgWR0CHIsDPGACodX2UKGgGaAloD0MIhGHAkisXa8CUhpRSlGgVTS0BaBZHQIcnez0HyEt1fZQoaAZoCWgPQwi9qx4wr2eFwJSGlFKUaBVL9WgWR0CHKUrbQC0XdX2UKGgGaAloD0MILdLEO2BvgcCUhpRSlGgVS35oFkdAhzKIGyHEdnV9lChoBmgJaA9DCGO4OgDisWPAlIaUUpRoFU0tAWgWR0CHNfV0cOsldX2UKGgGaAloD0MIzLOSVrzjhMCUhpRSlGgVS+poFkdAhzdCVKPGQ3V9lChoBmgJaA9DCI/Ey9NZA4LAlIaUUpRoFUuAaBZHQIc/Gs3hn8N1fZQoaAZoCWgPQwjzcth9B46BwJSGlFKUaBVLZ2gWR0CHQa8UVSGbdX2UKGgGaAloD0MItaUO8vpvacCUhpRSlGgVTS0BaBZHQIdEkGHHmzV1fZQoaAZoCWgPQwgv+grSrKqCwJSGlFKUaBVLgmgWR0CHTWaUiY9gdX2UKGgGaAloD0MIYMyWrArAYcCUhpRSlGgVTS0BaBZHQIdOZHZsbed1fZQoaAZoCWgPQwi7mdGPBqhmwJSGlFKUaBVNLQFoFkdAh1VPWYnfEXV9lChoBmgJaA9DCBeDh2lfD2DAlIaUUpRoFU0tAWgWR0CHVyV2Rq46dX2UKGgGaAloD0MIdXRcjUzogcCUhpRSlGgVS4ZoFkdAh1eOXE61cHV9lChoBmgJaA9DCJvIzAVuooHAlIaUUpRoFUt6aBZHQIdi5ckdFOR1fZQoaAZoCWgPQwg8+IkD6MVpwJSGlFKUaBVNLQFoFkdAh2jj3Ehq03V9lChoBmgJaA9DCKs/wjAgjYXAlIaUUpRoFUv1aBZHQIdtHrQgLZ11fZQoaAZoCWgPQwhFYoIaPoFjwJSGlFKUaBVNLQFoFkdAh3UoS13MZHV9lChoBmgJaA9DCJGYoIYvI4HAlIaUUpRoFUt7aBZHQId1uQXAM2F1fZQoaAZoCWgPQwh5y9WPTaVVwJSGlFKUaBVNLQFoFkdAh4ESQ5myxHV9lChoBmgJaA9DCOwWgbG+RFfAlIaUUpRoFU0tAWgWR0CHijOO801qdX2UKGgGaAloD0MIHQWIghmLZ8CUhpRSlGgVTS0BaBZHQIeSXk92X9l1fZQoaAZoCWgPQwiPOGQD6UxIQJSGlFKUaBVNLQFoFkdAh5L6d1+y7nV9lChoBmgJaA9DCNb9YyFa84HAlIaUUpRoFUt9aBZHQIeXwP07KaJ1fZQoaAZoCWgPQwiimpKsgxqBwJSGlFKUaBVLdmgWR0CH4qBOpKjBdX2UKGgGaAloD0MIFF6CUx/3ZMCUhpRSlGgVTS0BaBZHQIfi3iR4hU11fZQoaAZoCWgPQwix/Pm28N6RQJSGlFKUaBVLqWgWR0CH8eDIzWPMdX2UKGgGaAloD0MINEsC1NSpZ8CUhpRSlGgVTS0BaBZHQIfyhg7YChh1fZQoaAZoCWgPQwj+R6ZDp9dgwJSGlFKUaBVNLQFoFkdAh/dc94eLenV9lChoBmgJaA9DCCrhCb3+BGPAlIaUUpRoFU0tAWgWR0CH/0THsC1adX2UKGgGaAloD0MIRBX+DI9dgsCUhpRSlGgVTRUBaBZHQIgOnt0FKTV1fZQoaAZoCWgPQwiCN6RRAXdgwJSGlFKUaBVNLQFoFkdAiBDkAYHgP3V9lChoBmgJaA9DCN6tLNHZp2TAlIaUUpRoFU0tAWgWR0CIFbAmiQDFdX2UKGgGaAloD0MIvyuC/60fVMCUhpRSlGgVTS0BaBZHQIgeV0HQhOh1fZQoaAZoCWgPQwhZ3H9k+raBwJSGlFKUaBVL5WgWR0CIJktXgccVdX2UKGgGaAloD0MIcR3jiotzgcCUhpRSlGgVS3VoFkdAiCrb655JLHV9lChoBmgJaA9DCHgq4J7n7U/AlIaUUpRoFU0tAWgWR0CIL2p97WupdX2UKGgGaAloD0MIcM0d/S/oZsCUhpRSlGgVTS0BaBZHQIgzebTc6/91fZQoaAZoCWgPQwgPZD216tSRQJSGlFKUaBVLj2gWR0CIM7aA4GUwdX2UKGgGaAloD0MI3CxeLIzcgMCUhpRSlGgVS2poFkdAiDn/O+qR2nV9lChoBmgJaA9DCHHGMCeIT4XAlIaUUpRoFU0SAWgWR0CIPo+bmU4adX2UKGgGaAloD0MIuoJtxBPWZsCUhpRSlGgVTS0BaBZHQIhEny5I6Kd1fZQoaAZoCWgPQwjO/GoOMLWBwJSGlFKUaBVLcGgWR0CIR04tHxz8dX2UKGgGaAloD0MI9Q63Q8NARUCUhpRSlGgVTS0BaBZHQIhIiUkfLcN1fZQoaAZoCWgPQwguVP613NuBwJSGlFKUaBVLbWgWR0CIUJPqs2ehdX2UKGgGaAloD0MIud42UyFBZMCUhpRSlGgVTS0BaBZHQIhSa+N96Tp1fZQoaAZoCWgPQwhK0F/oEWhnwJSGlFKUaBVNLQFoFkdAiGGYFA3T/nV9lChoBmgJaA9DCM2ueysS9WXAlIaUUpRoFU0tAWgWR0CIZ0bADaGpdX2UKGgGaAloD0MIu2Hbokz1bsCUhpRSlGgVTS0BaBZHQIhxXz+WGAV1fZQoaAZoCWgPQwjU1ohgnAVjwJSGlFKUaBVNLQFoFkdAiHMeNcW0q3V9lChoBmgJaA9DCB3jioujL4LAlIaUUpRoFUtyaBZHQIh8wqLCN0h1fZQoaAZoCWgPQwj8AQ8MIDJcwJSGlFKUaBVNLQFoFkdAiIAtkOI683V9lChoBmgJaA9DCI5bzM/Nc4PAlIaUUpRoFUuXaBZHQIiBD8WKuSx1fZQoaAZoCWgPQwgF/YUeMRZjwJSGlFKUaBVNLQFoFkdAiIT/GVAzHnV9lChoBmgJaA9DCMyZ7QqdgYLAlIaUUpRoFUt+aBZHQIiIMwHqu8t1fZQoaAZoCWgPQwhGzy10xVOBwJSGlFKUaBVLdGgWR0CIkA4b0e2edX2UKGgGaAloD0MIu5f75Ijcg8CUhpRSlGgVS+RoFkdAiJWNeMQ2/HV9lChoBmgJaA9DCNFBl3DoFWPAlIaUUpRoFU0tAWgWR0CInqM2m52AdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.9, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2928f5240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2928f52d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2928f5360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2928f53f0>", "_build": "<function ActorCriticPolicy._build at 0x7fa2928f5480>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2928f5510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa2928f55a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2928f5630>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2928f56c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2928f5750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2928f57e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2928f5870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa2928e9bc0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681928884688037255, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAABJD5ELMQjFA6Qk0QlZqe0IAAMhCAADIQvINnEIz1FhCAADIQi+HIkLhd+lCi0abPwAAyEL0Ix9CBFgsQuCRcEIAAMhCAADIQqxtkkIBrmNCSjrtQqYmMj5BrWtCAADIQgeYJ0Ktlh1C2o5oQlyng0IAAMhCAADIQj1160IyR6g/ySxWQuI2I0LCUj5CMfSBQgAAyEIAAMhCMweUQmyDaUKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInSy13i/Bd8CUhpRSlIwBbJRNLQGMAXSUR0CGEy4axX4kdX2UKGgGaAloD0MICi/BqQ8feMCUhpRSlGgVTS0BaBZHQIYVkUqQRwt1fZQoaAZoCWgPQwhCl3DobZt4wJSGlFKUaBVNLQFoFkdAhhziyyD7InV9lChoBmgJaA9DCGtJRzkYfnjAlIaUUpRoFU0tAWgWR0CGHt6GgzxgdX2UKGgGaAloD0MIzse1oWJ/d8CUhpRSlGgVTS0BaBZHQIYvYIQe3hJ1fZQoaAZoCWgPQwhSmPc4E513wJSGlFKUaBVNLQFoFkdAhjI4H5aePXV9lChoBmgJaA9DCE0Ttp/MUnjAlIaUUpRoFU0tAWgWR0CGOoilBQendX2UKGgGaAloD0MIRWPt7yyHd8CUhpRSlGgVTS0BaBZHQIY9RRGc4HZ1fZQoaAZoCWgPQwinsb0WtL54wJSGlFKUaBVNLQFoFkdAhk+hAOavzXV9lChoBmgJaA9DCDl9PV+zHHjAlIaUUpRoFU0tAWgWR0CGUufCAMDwdX2UKGgGaAloD0MIxO47hsf1d8CUhpRSlGgVTS0BaBZHQIZbU/D+BH11fZQoaAZoCWgPQwhVo1cD1Ct4wJSGlFKUaBVNLQFoFkdAhlyuyVv/BHV9lChoBmgJaA9DCNBDbRtGQ3jAlIaUUpRoFU0tAWgWR0CGbjb+tKZldX2UKGgGaAloD0MIRPrt68CAeMCUhpRSlGgVTS0BaBZHQIZxVfXwsoV1fZQoaAZoCWgPQwh0XfjBObN4wJSGlFKUaBVNLQFoFkdAhnlSY5T6znV9lChoBmgJaA9DCKmieJV1HnjAlIaUUpRoFU0tAWgWR0CGfBQcghbGdX2UKGgGaAloD0MILPGAsqkoeMCUhpRSlGgVTS0BaBZHQIaP9lkH2RJ1fZQoaAZoCWgPQwgFvw0xHtR3wJSGlFKUaBVNLQFoFkdAhpPGIbfgrHV9lChoBmgJaA9DCMNEgxR8b3jAlIaUUpRoFU0tAWgWR0CGnH73wkPddX2UKGgGaAloD0MIIQa69sUCeMCUhpRSlGgVTS0BaBZHQIbm/4wh4dJ1fZQoaAZoCWgPQwiU3czoR2Z4wJSGlFKUaBVNLQFoFkdAhvLiXQdCFHV9lChoBmgJaA9DCPeUnBO7DnnAlIaUUpRoFU0tAWgWR0CG9PtTkyULdX2UKGgGaAloD0MIjrJ+M/Had8CUhpRSlGgVTS0BaBZHQIb7yPhhpg11fZQoaAZoCWgPQwgFhxdEJJt4wJSGlFKUaBVNLQFoFkdAhv07CJoCdXV9lChoBmgJaA9DCL9H/fUKJnjAlIaUUpRoFU0tAWgWR0CHDHdCVryldX2UKGgGaAloD0MIlIjwL8IOecCUhpRSlGgVTS0BaBZHQIcPIF9roGJ1fZQoaAZoCWgPQwhfQC/cOZN3wJSGlFKUaBVNLQFoFkdAhxZf4AS39nV9lChoBmgJaA9DCPqXpDJFJnjAlIaUUpRoFU0tAWgWR0CHGKyZa3ZxdX2UKGgGaAloD0MIhxiveVWveMCUhpRSlGgVTS0BaBZHQIcqR20Re1N1fZQoaAZoCWgPQwiB0eXNoWd3wJSGlFKUaBVNLQFoFkdAhyxwemvW6XV9lChoBmgJaA9DCPwBDwwghXjAlIaUUpRoFU0tAWgWR0CHNBEkSmIkdX2UKGgGaAloD0MIhxiveVWveMCUhpRSlGgVTS0BaBZHQIc2UnXumaZ1fZQoaAZoCWgPQwjkLVc/tup2wJSGlFKUaBVNLQFoFkdAh0cOgYgq3HV9lChoBmgJaA9DCF6hD5axeHjAlIaUUpRoFU0tAWgWR0CHShO5avA5dX2UKGgGaAloD0MIR6zFp4AgeMCUhpRSlGgVTS0BaBZHQIdR2bobGWF1fZQoaAZoCWgPQwiGrdnKy3N4wJSGlFKUaBVNLQFoFkdAh1Qxri2lVXV9lChoBmgJaA9DCIcYr3lVr3jAlIaUUpRoFU0tAWgWR0CHY7Y9Pk7wdX2UKGgGaAloD0MIbCOe7KYpeMCUhpRSlGgVTS0BaBZHQIdl6vNeMQ51fZQoaAZoCWgPQwgZ4lgXd1p4wJSGlFKUaBVNLQFoFkdAh2ydK/VRUHV9lChoBmgJaA9DCBtl/WZib3jAlIaUUpRoFU0tAWgWR0CHbhFfAsTWdX2UKGgGaAloD0MIvHX+7bIweMCUhpRSlGgVTS0BaBZHQId/5/7SApd1fZQoaAZoCWgPQwg65jxjH4V4wJSGlFKUaBVNLQFoFkdAh4L1nuiN83V9lChoBmgJaA9DCLkXmBWKNHjAlIaUUpRoFU0tAWgWR0CHi4F+uvECdX2UKGgGaAloD0MIuJBHcOM5eMCUhpRSlGgVTS0BaBZHQIeOQiFCb+d1fZQoaAZoCWgPQwhjKv2Es7h3wJSGlFKUaBVNLQFoFkdAh6ACD/VAiXV9lChoBmgJaA9DCPJ5xVOPpnfAlIaUUpRoFU0tAWgWR0CHo2AZKnNxdX2UKGgGaAloD0MIXALwT+lteMCUhpRSlGgVTS0BaBZHQIfkD1mJ3xF1fZQoaAZoCWgPQwghWcAE7sd4wJSGlFKUaBVNLQFoFkdAh+XQk5ZKWnV9lChoBmgJaA9DCM0d/S8X2HfAlIaUUpRoFU0tAWgWR0CH9MAf+0gKdX2UKGgGaAloD0MIt88qM+W3eMCUhpRSlGgVTS0BaBZHQIf3g9/z8P51fZQoaAZoCWgPQwio5QeucnB3wJSGlFKUaBVNLQFoFkdAh/7o+fRNRHV9lChoBmgJaA9DCL7Ye/HF+HfAlIaUUpRoFU0tAWgWR0CIAW97F85TdX2UKGgGaAloD0MIu9Vz0vvCeMCUhpRSlGgVTS0BaBZHQIgTmicoYvZ1fZQoaAZoCWgPQwjEeqNW2AB4wJSGlFKUaBVNLQFoFkdAiBXv9cbBGnV9lChoBmgJaA9DCEW5NH7hDHjAlIaUUpRoFU0tAWgWR0CIHRCojv/jdX2UKGgGaAloD0MINIEiFvE7d8CUhpRSlGgVTS0BaBZHQIgffMnqmj11fZQoaAZoCWgPQwjpgY/Bilp4wJSGlFKUaBVNLQFoFkdAiDJVU+9rXXV9lChoBmgJaA9DCAJiEi7kIHjAlIaUUpRoFU0tAWgWR0CINYMF2V3VdX2UKGgGaAloD0MIEqERbFxseMCUhpRSlGgVTS0BaBZHQIg/MtTUAkt1fZQoaAZoCWgPQwjMft3pDih3wJSGlFKUaBVNLQFoFkdAiEIyS/0ulHV9lChoBmgJaA9DCAGnd/H+RHfAlIaUUpRoFU0tAWgWR0CIU2pe/pMYdX2UKGgGaAloD0MInGuYoTE2eMCUhpRSlGgVTS0BaBZHQIhWUxj8UEh1fZQoaAZoCWgPQwgUJoxmJWZ3wJSGlFKUaBVNLQFoFkdAiF9agVXV9XV9lChoBmgJaA9DCBvV6UBWwnjAlIaUUpRoFU0tAWgWR0CIYicRUWEcdX2UKGgGaAloD0MIiEm4kAdBd8CUhpRSlGgVTS0BaBZHQIh0zPdEb5x1fZQoaAZoCWgPQwhaZDvfD/h3wJSGlFKUaBVNLQFoFkdAiHeJiiItUXV9lChoBmgJaA9DCGstzEJ7enjAlIaUUpRoFU0tAWgWR0CIgEiMYMvzdX2UKGgGaAloD0MIi21S0VjZd8CUhpRSlGgVTS0BaBZHQIiC+/5+H8F1fZQoaAZoCWgPQwh96lil9CN3wJSGlFKUaBVNLQFoFkdAiJTKgRK6F3V9lChoBmgJaA9DCPSKpx7py3fAlIaUUpRoFU0tAWgWR0CImBksjFAFdX2UKGgGaAloD0MIJhsPttg3eMCUhpRSlGgVTS0BaBZHQIigDcKw6hh1fZQoaAZoCWgPQwjJIeLmFHB4wJSGlFKUaBVNLQFoFkdAiKKU1qFh5XV9lChoBmgJaA9DCP6arFGPoHfAlIaUUpRoFU0tAWgWR0CItgn+AEt/dX2UKGgGaAloD0MIgc8PI0QXeMCUhpRSlGgVTS0BaBZHQIkB6gM+eOJ1fZQoaAZoCWgPQwiHvyZrlJp4wJSGlFKUaBVNLQFoFkdAiQqTOPeYUnV9lChoBmgJaA9DCDs0LEYdvnfAlIaUUpRoFU0tAWgWR0CJDWqbSZ0CdX2UKGgGaAloD0MIs193ujN5d8CUhpRSlGgVTS0BaBZHQIkgpuQ6p5x1fZQoaAZoCWgPQwjjT1Q2rId3wJSGlFKUaBVNLQFoFkdAiSPUVBUrCnV9lChoBmgJaA9DCFpmEYptNXjAlIaUUpRoFU0tAWgWR0CJK+lxffGddX2UKGgGaAloD0MIVOV7RiKseMCUhpRSlGgVTS0BaBZHQIkuMCvHLid1fZQoaAZoCWgPQwiUaTS5mPZ2wJSGlFKUaBVNLQFoFkdAiT19nCfpU3V9lChoBmgJaA9DCHfc8Ltp3XfAlIaUUpRoFU0tAWgWR0CJQC0Nz8xcdX2UKGgGaAloD0MI1bFK6dkSeMCUhpRSlGgVTS0BaBZHQIlHFPi1iON1fZQoaAZoCWgPQwh2MjhKXnd3wJSGlFKUaBVNLQFoFkdAiUkp8OTaCnV9lChoBmgJaA9DCHPzjejeQ3jAlIaUUpRoFU0tAWgWR0CJWW67NB4VdX2UKGgGaAloD0MIw2UVNgP7d8CUhpRSlGgVTS0BaBZHQIlc1Yp2ECh1fZQoaAZoCWgPQwg1ecpq+sF3wJSGlFKUaBVNLQFoFkdAiWSsjeKsMnV9lChoBmgJaA9DCJPkub5PWHjAlIaUUpRoFU0tAWgWR0CJZtZOBUaRdX2UKGgGaAloD0MI4Gky4+16d8CUhpRSlGgVTS0BaBZHQIl2QCCBf8d1fZQoaAZoCWgPQwiQ+YBA59B3wJSGlFKUaBVNLQFoFkdAiXh4nF5v+HV9lChoBmgJaA9DCKYKRiX19nfAlIaUUpRoFU0tAWgWR0CJfwO3lS0jdX2UKGgGaAloD0MIaTaPw2B4eMCUhpRSlGgVTS0BaBZHQImBhz5oGpx1fZQoaAZoCWgPQwgKgPEMWnB4wJSGlFKUaBVNLQFoFkdAiZKcpLEk0XV9lChoBmgJaA9DCBu+hXVjxXjAlIaUUpRoFU0tAWgWR0CJldkQPI4mdX2UKGgGaAloD0MIQgWHF4TmeMCUhpRSlGgVTS0BaBZHQImekKPXCj11fZQoaAZoCWgPQwjmrboOlfZ3wJSGlFKUaBVNLQFoFkdAiaETAN5MUXV9lChoBmgJaA9DCJAUkWGVhHjAlIaUUpRoFU0tAWgWR0CJsGUM5OrRdX2UKGgGaAloD0MIU+qScUzLdsCUhpRSlGgVTS0BaBZHQImy1NnGsFN1fZQoaAZoCWgPQwixxAPKJoJ3wJSGlFKUaBVNLQFoFkdAiboHLaEi+3V9lChoBmgJaA9DCEzEW+cffHjAlIaUUpRoFU0tAWgWR0CJu/cHGCI2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -106.05492408752445, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T11:42:17.674767"}
|