culteejen commited on
Commit
774d692
1 Parent(s): 556f8f7

Upload model to Hugging Face

Browse files
BC-harcodemap-punish-stagnant.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e6bcb12d21b37efe487cdcd7bda7675b6c8d437e98acc06caf72018a129f9dd6
3
- size 44090
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c23b5f638f5d6ff6cc2693edeecc59e7a9a13d548985239eb69d50d64815087
3
+ size 44082
BC-harcodemap-punish-stagnant/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd1f4ed240>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd1f4ed2d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd1f4ed360>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd1f4ed3f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fdd1f4ed480>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fdd1f4ed510>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd1f4ed5a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd1f4ed630>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fdd1f4ed6c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd1f4ed750>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd1f4ed7e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd1f4ed870>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fdd1f4ddf00>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1681926948386616652,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAADD1ikP25aq/AADIQoe8p0LjaIpC0FtXQgo2K0JIOhJCAADIQgAAyEJrDX9Dftncv2ht1EHwdZlB5MeyQQAAyEIAAMhCAADIQgAAyEIAAMhCt088Q7v/JsAAAMhCAADIQgAAyEJBwK9CAADIQgAAyEIAAMhCAADIQkPyO0O9Bi/ApxDEQowMdEIAAMhCAADIQv+QtkIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,7 +70,7 @@
70
  "_current_progress_remaining": -0.02400000000000002,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIt0JYjcVthMCUhpRSlIwBbJRLuowBdJRHQISa5zLfUF11fZQoaAZoCWgPQwhl+5C33LBhwJSGlFKUaBVNLQFoFkdAhKJj3/Pw/nV9lChoBmgJaA9DCLlVEAO9DoTAlIaUUpRoFUuvaBZHQISm4IWxhUl1fZQoaAZoCWgPQwgbhSSzmryDwJSGlFKUaBVLpGgWR0CErRWCEpRXdX2UKGgGaAloD0MIyjfb3JidasCUhpRSlGgVTS0BaBZHQIS3B46fapR1fZQoaAZoCWgPQwjXGHRC6I5ZwJSGlFKUaBVNLQFoFkdAhMIT06HTJHV9lChoBmgJaA9DCGheDrtvL2nAlIaUUpRoFU0tAWgWR0CExcPFvQ4TdX2UKGgGaAloD0MIbk4lA4DHg8CUhpRSlGgVS/poFkdAhMaofbKzRnV9lChoBmgJaA9DCMsUcxB0/F/AlIaUUpRoFU0tAWgWR0CE1KjVQQ+VdX2UKGgGaAloD0MIyNPyA/cLg8CUhpRSlGgVS5toFkdAhNVc7ZFoc3V9lChoBmgJaA9DCIUIOISqRGzAlIaUUpRoFU0tAWgWR0CE39o+OfdzdX2UKGgGaAloD0MIGRwlr86aa8CUhpRSlGgVTS0BaBZHQITkQr1/UfB1fZQoaAZoCWgPQwj1ZP7Rt+eDwJSGlFKUaBVLsWgWR0CE5ZrpJPIodX2UKGgGaAloD0MI/mMhOoRybcCUhpRSlGgVTS0BaBZHQITxQzDXOGF1fZQoaAZoCWgPQwjKGvUQzQGEwJSGlFKUaBVL6mgWR0CE9IQYDTz/dX2UKGgGaAloD0MIzGCMSJTBbMCUhpRSlGgVTS0BaBZHQIT8Fxn3+Mt1fZQoaAZoCWgPQwhFL6NYbi1twJSGlFKUaBVNLQFoFkdAhP20qQRwqHV9lChoBmgJaA9DCEetMH3PqYPAlIaUUpRoFUujaBZHQIUAA/s3Q2N1fZQoaAZoCWgPQwg7cw8J395cwJSGlFKUaBVNLQFoFkdAhQbYRmK64HV9lChoBmgJaA9DCJinc0XpC3DAlIaUUpRoFU0tAWgWR0CFFFW4EwFldX2UKGgGaAloD0MI203wTdPUZ8CUhpRSlGgVTS0BaBZHQIUWSnHeaa11fZQoaAZoCWgPQwij5qvkY/ddwJSGlFKUaBVNLQFoFkdAhRmIWpIcznV9lChoBmgJaA9DCNP1RNflEYjAlIaUUpRoFU0eAWgWR0CFH/Tuv2XcdX2UKGgGaAloD0MIvCAiNW21hsCUhpRSlGgVS+xoFkdAhSjSjQAuI3V9lChoBmgJaA9DCDkqN1HrYoPAlIaUUpRoFUv6aBZHQIUr/jU/fO51fZQoaAZoCWgPQwhuFi8WZu+EwJSGlFKUaBVL7WgWR0CFLajynUDudX2UKGgGaAloD0MIKA8LtaY9S8CUhpRSlGgVTS0BaBZHQIU9WKVII4V1fZQoaAZoCWgPQwj7lGOyGOeDwJSGlFKUaBVLsWgWR0CFPpL9uP3jdX2UKGgGaAloD0MISYJwBZTxb8CUhpRSlGgVTS0BaBZHQIVItxS5y2h1fZQoaAZoCWgPQwj6eyk86LtpwJSGlFKUaBVNLQFoFkdAhU3fX5FgD3V9lChoBmgJaA9DCM40YftJ0mnAlIaUUpRoFU0tAWgWR0CFl2r/bTMJdX2UKGgGaAloD0MIFF0XfnCPZsCUhpRSlGgVTS0BaBZHQIWYVzfaYeF1fZQoaAZoCWgPQwjMJOoFH7RnwJSGlFKUaBVNLQFoFkdAhZ/HA6+36XV9lChoBmgJaA9DCPgYrDhVvWvAlIaUUpRoFU0tAWgWR0CFpFiPQv6CdX2UKGgGaAloD0MIQz19BN6KhMCUhpRSlGgVTRABaBZHQIWvwNEw35x1fZQoaAZoCWgPQwi2gqYlVi1swJSGlFKUaBVNLQFoFkdAhbNM0P6KtXV9lChoBmgJaA9DCJ/kDpvIP33AlIaUUpRoFUtaaBZHQIW3jZWaMJh1fZQoaAZoCWgPQwiyKsJNRh5mwJSGlFKUaBVNLQFoFkdAhbtXr+o993V9lChoBmgJaA9DCOgyNQkewX3AlIaUUpRoFUtfaBZHQIW7ua6STyJ1fZQoaAZoCWgPQwhyi/m5AY2EwJSGlFKUaBVNHQFoFkdAhb5FUp/gBXV9lChoBmgJaA9DCD/h7Nay9YDAlIaUUpRoFUuJaBZHQIXLjwBo24x1fZQoaAZoCWgPQwgk1AypIpdswJSGlFKUaBVNLQFoFkdAhdMXJo0yg3V9lChoBmgJaA9DCMWtghhIJoTAlIaUUpRoFU0PAWgWR0CF1CuEEkjYdX2UKGgGaAloD0MIOIO/X0zzacCUhpRSlGgVTS0BaBZHQIXWwSzw+dN1fZQoaAZoCWgPQwjzAYHOJGZ9wJSGlFKUaBVLVWgWR0CF2bfReC04dX2UKGgGaAloD0MIDTm2noFrg8CUhpRSlGgVS69oFkdAhdnVQ66renV9lChoBmgJaA9DCGe4AZ8/YITAlIaUUpRoFUvFaBZHQIXiq7ZnL7p1fZQoaAZoCWgPQwgiqBq9+rmHwJSGlFKUaBVL9GgWR0CF58UB4lhPdX2UKGgGaAloD0MIWcFvQ0zRhcCUhpRSlGgVTScBaBZHQIXthwS8J2N1fZQoaAZoCWgPQwjeyhKdZYVuwJSGlFKUaBVNLQFoFkdAhe4EJrtVrHV9lChoBmgJaA9DCC16pwJuVGzAlIaUUpRoFU0tAWgWR0CF+JxHXmNjdX2UKGgGaAloD0MI198SgN/kg8CUhpRSlGgVS7hoFkdAhf5AlOXVsnV9lChoBmgJaA9DCABWR440FXbAlIaUUpRoFU0tAWgWR0CGAMbfgrH3dX2UKGgGaAloD0MI8bkT7L+8bMCUhpRSlGgVTS0BaBZHQIYKUUuctoV1fZQoaAZoCWgPQwiJtmPqLpmAwJSGlFKUaBVLfWgWR0CGDar92ovSdX2UKGgGaAloD0MI8x5nmvAwfcCUhpRSlGgVS1loFkdAhhbnxBmf5HV9lChoBmgJaA9DCC/gZYaNFmvAlIaUUpRoFU0tAWgWR0CGF7dX1anrdX2UKGgGaAloD0MI4443+a0DacCUhpRSlGgVTS0BaBZHQIYcn7Lt/nZ1fZQoaAZoCWgPQwhWSPlJ9QmFwJSGlFKUaBVNFwFoFkdAhiTnxjJ+2HV9lChoBmgJaA9DCMRCrWm+qYLAlIaUUpRoFUvvaBZHQIYr1pZfUnZ1fZQoaAZoCWgPQwj6mXrdIq9vwJSGlFKUaBVNLQFoFkdAhjE4/Vy3kXV9lChoBmgJaA9DCLmKxW9qVIPAlIaUUpRoFUv8aBZHQIYyzKPn0TV1fZQoaAZoCWgPQwi/Q1GgD5Z8wJSGlFKUaBVLVWgWR0CGNDZzxPO6dX2UKGgGaAloD0MI54pSQpBxg8CUhpRSlGgVS7BoFkdAhjTuEug6EXV9lChoBmgJaA9DCFRx4xbzeHzAlIaUUpRoFUtRaBZHQIY5Bi5NGmV1fZQoaAZoCWgPQwhIpG38yS19wJSGlFKUaBVLX2gWR0CGO4G6f8MvdX2UKGgGaAloD0MIyVcCKfEKfsCUhpRSlGgVS2FoFkdAhjzvz4DcM3V9lChoBmgJaA9DCGKCGr5FmIPAlIaUUpRoFUufaBZHQIZ+kyFfzBh1fZQoaAZoCWgPQwg4Ef3aWnODwJSGlFKUaBVLomgWR0CGhnq9oN/fdX2UKGgGaAloD0MIhNkEGNa8hMCUhpRSlGgVS/xoFkdAhoouUUwi7nV9lChoBmgJaA9DCEmERrBxGlLAlIaUUpRoFU0tAWgWR0CGj+JF9a2XdX2UKGgGaAloD0MIyk4/qIs4aMCUhpRSlGgVTS0BaBZHQIaYjQswtap1fZQoaAZoCWgPQwiphCf0+k9iwJSGlFKUaBVNLQFoFkdAhqBwcPvrnnV9lChoBmgJaA9DCJIHIou0jGPAlIaUUpRoFU0tAWgWR0CGpDI1+AmRdX2UKGgGaAloD0MIE0iJXduUbcCUhpRSlGgVTS0BaBZHQIarSN2ki2V1fZQoaAZoCWgPQwh6/Ul87iaEwJSGlFKUaBVNAgFoFkdAhq/NsvZh8nV9lChoBmgJaA9DCG4ZcJZSKYTAlIaUUpRoFUuzaBZHQIaxDsOXmeV1fZQoaAZoCWgPQwgs8BXdOtODwJSGlFKUaBVLtWgWR0CGvUhL5AQhdX2UKGgGaAloD0MIrrfNVIgRg8CUhpRSlGgVTSQBaBZHQIbAd4JNTLp1fZQoaAZoCWgPQwiie9Y1emCDwJSGlFKUaBVLpGgWR0CGwTMGHHmzdX2UKGgGaAloD0MIQQ3fwrragsCUhpRSlGgVS5xoFkdAhst4wqRU3nV9lChoBmgJaA9DCIY41sVttGfAlIaUUpRoFU0tAWgWR0CGy+JhOP/8dX2UKGgGaAloD0MIvrwA+4hjg8CUhpRSlGgVS6toFkdAhs6gvL5h0HV9lChoBmgJaA9DCJVliGNdLBBAlIaUUpRoFU0tAWgWR0CG2MC4BmwrdX2UKGgGaAloD0MIZaa0/pYIg8CUhpRSlGgVTSEBaBZHQIbhAicG1QZ1fZQoaAZoCWgPQwivBb03hvBywJSGlFKUaBVNLQFoFkdAhuMU4zabnXV9lChoBmgJaA9DCEbtfhXgAHXAlIaUUpRoFU0tAWgWR0CG5rGGVRk3dX2UKGgGaAloD0MI0SLb+Z5Ig8CUhpRSlGgVS6xoFkdAhueL8rI5pHV9lChoBmgJaA9DCKD83TuKW4PAlIaUUpRoFUuuaBZHQIb28Yht+Ct1fZQoaAZoCWgPQwgW+mAZG2GDwJSGlFKUaBVNDgFoFkdAhvoQPAfuC3V9lChoBmgJaA9DCG7DKAie5mPAlIaUUpRoFU0tAWgWR0CG/mjua4MGdX2UKGgGaAloD0MIs9MP6iIzccCUhpRSlGgVTS0BaBZHQIcD0x9G7SR1fZQoaAZoCWgPQwjCvp1EBC+DwJSGlFKUaBVLn2gWR0CHDwLpA2Q5dX2UKGgGaAloD0MI4xbzcwOAhsCUhpRSlGgVS+VoFkdAhxDlXaJyhnV9lChoBmgJaA9DCFrz4y8tfG7AlIaUUpRoFU0tAWgWR0CHFS36yjYadX2UKGgGaAloD0MIh8Q9lh5GhMCUhpRSlGgVS7NoFkdAhxZQFcIJJHV9lChoBmgJaA9DCNbiUwAsWITAlIaUUpRoFUuzaBZHQIchhshxHXp1fZQoaAZoCWgPQwgyHxDoTEmEwJSGlFKUaBVLvmgWR0CHJON6PbPAdX2UKGgGaAloD0MIvtwnRyEfhcCUhpRSlGgVS8loFkdAhylvfbblBHV9lChoBmgJaA9DCMPvplsWsYTAlIaUUpRoFUvAaBZHQIcp0EgW8Ad1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4608ef9240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4608ef92d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4608ef9360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4608ef93f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4608ef9480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4608ef9510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4608ef95a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4608ef9630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4608ef96c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4608ef9750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4608ef97e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4608ef9870>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f4608ee9ec0>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1681928005142218419,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAES42UIBA84/AADIQknkkUIAAMhCAADIQgAAyELHsqdCByGJQpB3oEJAAuRC7yXuPwAAyEIAAMhCAADIQgAAyEKd4G1CAADIQoX/cUIAAMhCD2bPQl66vD9jNrJCWFFfQoCOZ0JDsa9CAADIQsWawUIAAMhCAADIQm55hkIF6uk/AADIQg4trULOppdCAADIQgAAyEKHzsFCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.02400000000000002,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkNeDSfHpb8CUhpRSlIwBbJRNLQGMAXSUR0CGDdI3BHkMdX2UKGgGaAloD0MITRHg9A6agsCUhpRSlGgVS4loFkdAhhlcUEgW8HV9lChoBmgJaA9DCI4G8BborILAlIaUUpRoFUuNaBZHQIYc/vv0AcV1fZQoaAZoCWgPQwiUpGsmP4iCwJSGlFKUaBVLiGgWR0CGHVudf9gndX2UKGgGaAloD0MIyLJg4u8egsCUhpRSlGgVS3VoFkdAhiekHUtqYnV9lChoBmgJaA9DCGmrksj+L4bAlIaUUpRoFUvraBZHQIYp0ebNKRN1fZQoaAZoCWgPQwgJNxlVBiKBwJSGlFKUaBVLwGgWR0CGMPTwUg0TdX2UKGgGaAloD0MI6X5OQT4bgsCUhpRSlGgVS5FoFkdAhjWWZqmCRXV9lChoBmgJaA9DCM1Zn3Ls94LAlIaUUpRoFUuLaBZHQIY2yvs7dSF1fZQoaAZoCWgPQwj6YBkbOmpjwJSGlFKUaBVNLQFoFkdAhj1fpMYdhnV9lChoBmgJaA9DCFfMCG9vUYLAlIaUUpRoFUt5aBZHQIY+OK8+Ro11fZQoaAZoCWgPQwiY/E/+bkCDwJSGlFKUaBVLrGgWR0CGUOaDwpfAdX2UKGgGaAloD0MIuVM6WH+yZMCUhpRSlGgVTS0BaBZHQIZYBAQg9vF1fZQoaAZoCWgPQwgKoBhZsgplwJSGlFKUaBVNLQFoFkdAhll8p9ZzP3V9lChoBmgJaA9DCDT4+8XMDoPAlIaUUpRoFUuBaBZHQIZe4ID5j6N1fZQoaAZoCWgPQwgvNNdppDxkwJSGlFKUaBVNLQFoFkdAhl9+u/1xsHV9lChoBmgJaA9DCMe5Tbi36IHAlIaUUpRoFUtuaBZHQIZhShzvJBB1fZQoaAZoCWgPQwgSo+cW2hyCwJSGlFKUaBVLf2gWR0CGZqfywwCbdX2UKGgGaAloD0MIBwlRvuCJhcCUhpRSlGgVS9poFkdAhmg42S+xnnV9lChoBmgJaA9DCDs0LEadv4XAlIaUUpRoFUvxaBZHQIZuV4/u9e11fZQoaAZoCWgPQwgC8E+pklaCwJSGlFKUaBVLcGgWR0CGbw7yQPqcdX2UKGgGaAloD0MIyogLQCPhYsCUhpRSlGgVTS0BaBZHQIZ3xQSBbwB1fZQoaAZoCWgPQwg+eO3SxteBwJSGlFKUaBVLbWgWR0CGeUwosqaxdX2UKGgGaAloD0MI0sYRa7GggsCUhpRSlGgVS4hoFkdAhnvB0p3HJnV9lChoBmgJaA9DCGajc34K/ITAlIaUUpRoFU0jAWgWR0CGgyx4Y77sdX2UKGgGaAloD0MIqnzPSGQ6gMCUhpRSlGgVS7toFkdAhor2JrLyMHV9lChoBmgJaA9DCDBjCtZY6oPAlIaUUpRoFUuhaBZHQIaTdQuVX3h1fZQoaAZoCWgPQwhxdQDEHVCBwJSGlFKUaBVLX2gWR0CGlJtG/etTdX2UKGgGaAloD0MI5geu8oRzbMCUhpRSlGgVTS0BaBZHQIaYlHFxXGR1fZQoaAZoCWgPQwgvih74GGtmwJSGlFKUaBVNLQFoFkdAhpsIJZ4fOnV9lChoBmgJaA9DCONV1jblHYPAlIaUUpRoFUuCaBZHQIajXkFOful1fZQoaAZoCWgPQwhTW+ogTw+DwJSGlFKUaBVLlmgWR0CG5+zN2TxHdX2UKGgGaAloD0MIZ2X7kLcqgsCUhpRSlGgVS4doFkdAhu5Si22G7HV9lChoBmgJaA9DCCeh9IUQBmfAlIaUUpRoFU0tAWgWR0CG8OqZML4OdX2UKGgGaAloD0MII0vmWN6Db8CUhpRSlGgVTS0BaBZHQIb3iSq2jO91fZQoaAZoCWgPQwiSIFwBZc+BwJSGlFKUaBVLbmgWR0CG+tcyFfzCdX2UKGgGaAloD0MIIm5OJUPOgcCUhpRSlGgVS4FoFkdAhwEJFkQPJHV9lChoBmgJaA9DCDRIwVNIkmLAlIaUUpRoFU0tAWgWR0CHAQqNp/PPdX2UKGgGaAloD0MILzIBv0baYMCUhpRSlGgVTS0BaBZHQIcIakZaV2R1fZQoaAZoCWgPQwi0W8tk+BKCwJSGlFKUaBVLjGgWR0CHDgB6KLsKdX2UKGgGaAloD0MIwtoYO+EKX8CUhpRSlGgVTS0BaBZHQIcUbnied091fZQoaAZoCWgPQwj5LM+Du2RpwJSGlFKUaBVNLQFoFkdAhxv/iYLLIXV9lChoBmgJaA9DCAYv+grSKVrAlIaUUpRoFU0tAWgWR0CHIsDPGACodX2UKGgGaAloD0MIhGHAkisXa8CUhpRSlGgVTS0BaBZHQIcnez0HyEt1fZQoaAZoCWgPQwi9qx4wr2eFwJSGlFKUaBVL9WgWR0CHKUrbQC0XdX2UKGgGaAloD0MILdLEO2BvgcCUhpRSlGgVS35oFkdAhzKIGyHEdnV9lChoBmgJaA9DCGO4OgDisWPAlIaUUpRoFU0tAWgWR0CHNfV0cOsldX2UKGgGaAloD0MIzLOSVrzjhMCUhpRSlGgVS+poFkdAhzdCVKPGQ3V9lChoBmgJaA9DCI/Ey9NZA4LAlIaUUpRoFUuAaBZHQIc/Gs3hn8N1fZQoaAZoCWgPQwjzcth9B46BwJSGlFKUaBVLZ2gWR0CHQa8UVSGbdX2UKGgGaAloD0MItaUO8vpvacCUhpRSlGgVTS0BaBZHQIdEkGHHmzV1fZQoaAZoCWgPQwgv+grSrKqCwJSGlFKUaBVLgmgWR0CHTWaUiY9gdX2UKGgGaAloD0MIYMyWrArAYcCUhpRSlGgVTS0BaBZHQIdOZHZsbed1fZQoaAZoCWgPQwi7mdGPBqhmwJSGlFKUaBVNLQFoFkdAh1VPWYnfEXV9lChoBmgJaA9DCBeDh2lfD2DAlIaUUpRoFU0tAWgWR0CHVyV2Rq46dX2UKGgGaAloD0MIdXRcjUzogcCUhpRSlGgVS4ZoFkdAh1eOXE61cHV9lChoBmgJaA9DCJvIzAVuooHAlIaUUpRoFUt6aBZHQIdi5ckdFOR1fZQoaAZoCWgPQwg8+IkD6MVpwJSGlFKUaBVNLQFoFkdAh2jj3Ehq03V9lChoBmgJaA9DCKs/wjAgjYXAlIaUUpRoFUv1aBZHQIdtHrQgLZ11fZQoaAZoCWgPQwhFYoIaPoFjwJSGlFKUaBVNLQFoFkdAh3UoS13MZHV9lChoBmgJaA9DCJGYoIYvI4HAlIaUUpRoFUt7aBZHQId1uQXAM2F1fZQoaAZoCWgPQwh5y9WPTaVVwJSGlFKUaBVNLQFoFkdAh4ESQ5myxHV9lChoBmgJaA9DCOwWgbG+RFfAlIaUUpRoFU0tAWgWR0CHijOO801qdX2UKGgGaAloD0MIHQWIghmLZ8CUhpRSlGgVTS0BaBZHQIeSXk92X9l1fZQoaAZoCWgPQwiPOGQD6UxIQJSGlFKUaBVNLQFoFkdAh5L6d1+y7nV9lChoBmgJaA9DCNb9YyFa84HAlIaUUpRoFUt9aBZHQIeXwP07KaJ1fZQoaAZoCWgPQwiimpKsgxqBwJSGlFKUaBVLdmgWR0CH4qBOpKjBdX2UKGgGaAloD0MIFF6CUx/3ZMCUhpRSlGgVTS0BaBZHQIfi3iR4hU11fZQoaAZoCWgPQwix/Pm28N6RQJSGlFKUaBVLqWgWR0CH8eDIzWPMdX2UKGgGaAloD0MINEsC1NSpZ8CUhpRSlGgVTS0BaBZHQIfyhg7YChh1fZQoaAZoCWgPQwj+R6ZDp9dgwJSGlFKUaBVNLQFoFkdAh/dc94eLenV9lChoBmgJaA9DCCrhCb3+BGPAlIaUUpRoFU0tAWgWR0CH/0THsC1adX2UKGgGaAloD0MIRBX+DI9dgsCUhpRSlGgVTRUBaBZHQIgOnt0FKTV1fZQoaAZoCWgPQwiCN6RRAXdgwJSGlFKUaBVNLQFoFkdAiBDkAYHgP3V9lChoBmgJaA9DCN6tLNHZp2TAlIaUUpRoFU0tAWgWR0CIFbAmiQDFdX2UKGgGaAloD0MIvyuC/60fVMCUhpRSlGgVTS0BaBZHQIgeV0HQhOh1fZQoaAZoCWgPQwhZ3H9k+raBwJSGlFKUaBVL5WgWR0CIJktXgccVdX2UKGgGaAloD0MIcR3jiotzgcCUhpRSlGgVS3VoFkdAiCrb655JLHV9lChoBmgJaA9DCHgq4J7n7U/AlIaUUpRoFU0tAWgWR0CIL2p97WupdX2UKGgGaAloD0MIcM0d/S/oZsCUhpRSlGgVTS0BaBZHQIgzebTc6/91fZQoaAZoCWgPQwgPZD216tSRQJSGlFKUaBVLj2gWR0CIM7aA4GUwdX2UKGgGaAloD0MI3CxeLIzcgMCUhpRSlGgVS2poFkdAiDn/O+qR2nV9lChoBmgJaA9DCHHGMCeIT4XAlIaUUpRoFU0SAWgWR0CIPo+bmU4adX2UKGgGaAloD0MIuoJtxBPWZsCUhpRSlGgVTS0BaBZHQIhEny5I6Kd1fZQoaAZoCWgPQwjO/GoOMLWBwJSGlFKUaBVLcGgWR0CIR04tHxz8dX2UKGgGaAloD0MI9Q63Q8NARUCUhpRSlGgVTS0BaBZHQIhIiUkfLcN1fZQoaAZoCWgPQwguVP613NuBwJSGlFKUaBVLbWgWR0CIUJPqs2ehdX2UKGgGaAloD0MIud42UyFBZMCUhpRSlGgVTS0BaBZHQIhSa+N96Tp1fZQoaAZoCWgPQwhK0F/oEWhnwJSGlFKUaBVNLQFoFkdAiGGYFA3T/nV9lChoBmgJaA9DCM2ueysS9WXAlIaUUpRoFU0tAWgWR0CIZ0bADaGpdX2UKGgGaAloD0MIu2Hbokz1bsCUhpRSlGgVTS0BaBZHQIhxXz+WGAV1fZQoaAZoCWgPQwjU1ohgnAVjwJSGlFKUaBVNLQFoFkdAiHMeNcW0q3V9lChoBmgJaA9DCB3jioujL4LAlIaUUpRoFUtyaBZHQIh8wqLCN0h1fZQoaAZoCWgPQwj8AQ8MIDJcwJSGlFKUaBVNLQFoFkdAiIAtkOI683V9lChoBmgJaA9DCI5bzM/Nc4PAlIaUUpRoFUuXaBZHQIiBD8WKuSx1fZQoaAZoCWgPQwgF/YUeMRZjwJSGlFKUaBVNLQFoFkdAiIT/GVAzHnV9lChoBmgJaA9DCMyZ7QqdgYLAlIaUUpRoFUt+aBZHQIiIMwHqu8t1fZQoaAZoCWgPQwhGzy10xVOBwJSGlFKUaBVLdGgWR0CIkA4b0e2edX2UKGgGaAloD0MIu5f75Ijcg8CUhpRSlGgVS+RoFkdAiJWNeMQ2/HV9lChoBmgJaA9DCNFBl3DoFWPAlIaUUpRoFU0tAWgWR0CInqM2m52AdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
BC-harcodemap-punish-stagnant/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2dcc36372882f10d3a24e6077555556c550147b4591100602fa49acc224114cf
3
  size 18973
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a730086b764115936206815902486c049191cb6abdab53197c5a1dde1b3f842
3
  size 18973
BC-harcodemap-punish-stagnant/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f6332ca658159a5a43b8ae0f034cd2a1d9ef910d28d23e077d50d6ee80b0f98b
3
  size 9295
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c76ae8856fb6d0cc917b92d9a40016435df6ef0931adda5bae80c496dd68e831
3
  size 9295
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: RoombaAToB-harcodemap-punish-stagnant
17
  metrics:
18
  - type: mean_reward
19
- value: -431.30 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: RoombaAToB-harcodemap-punish-stagnant
17
  metrics:
18
  - type: mean_reward
19
+ value: -636.70 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd1f4ed240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd1f4ed2d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd1f4ed360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd1f4ed3f0>", "_build": "<function ActorCriticPolicy._build at 0x7fdd1f4ed480>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd1f4ed510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd1f4ed5a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd1f4ed630>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd1f4ed6c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd1f4ed750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd1f4ed7e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd1f4ed870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdd1f4ddf00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681926948386616652, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAADD1ikP25aq/AADIQoe8p0LjaIpC0FtXQgo2K0JIOhJCAADIQgAAyEJrDX9Dftncv2ht1EHwdZlB5MeyQQAAyEIAAMhCAADIQgAAyEIAAMhCt088Q7v/JsAAAMhCAADIQgAAyEJBwK9CAADIQgAAyEIAAMhCAADIQkPyO0O9Bi/ApxDEQowMdEIAAMhCAADIQv+QtkIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIt0JYjcVthMCUhpRSlIwBbJRLuowBdJRHQISa5zLfUF11fZQoaAZoCWgPQwhl+5C33LBhwJSGlFKUaBVNLQFoFkdAhKJj3/Pw/nV9lChoBmgJaA9DCLlVEAO9DoTAlIaUUpRoFUuvaBZHQISm4IWxhUl1fZQoaAZoCWgPQwgbhSSzmryDwJSGlFKUaBVLpGgWR0CErRWCEpRXdX2UKGgGaAloD0MIyjfb3JidasCUhpRSlGgVTS0BaBZHQIS3B46fapR1fZQoaAZoCWgPQwjXGHRC6I5ZwJSGlFKUaBVNLQFoFkdAhMIT06HTJHV9lChoBmgJaA9DCGheDrtvL2nAlIaUUpRoFU0tAWgWR0CExcPFvQ4TdX2UKGgGaAloD0MIbk4lA4DHg8CUhpRSlGgVS/poFkdAhMaofbKzRnV9lChoBmgJaA9DCMsUcxB0/F/AlIaUUpRoFU0tAWgWR0CE1KjVQQ+VdX2UKGgGaAloD0MIyNPyA/cLg8CUhpRSlGgVS5toFkdAhNVc7ZFoc3V9lChoBmgJaA9DCIUIOISqRGzAlIaUUpRoFU0tAWgWR0CE39o+OfdzdX2UKGgGaAloD0MIGRwlr86aa8CUhpRSlGgVTS0BaBZHQITkQr1/UfB1fZQoaAZoCWgPQwj1ZP7Rt+eDwJSGlFKUaBVLsWgWR0CE5ZrpJPIodX2UKGgGaAloD0MI/mMhOoRybcCUhpRSlGgVTS0BaBZHQITxQzDXOGF1fZQoaAZoCWgPQwjKGvUQzQGEwJSGlFKUaBVL6mgWR0CE9IQYDTz/dX2UKGgGaAloD0MIzGCMSJTBbMCUhpRSlGgVTS0BaBZHQIT8Fxn3+Mt1fZQoaAZoCWgPQwhFL6NYbi1twJSGlFKUaBVNLQFoFkdAhP20qQRwqHV9lChoBmgJaA9DCEetMH3PqYPAlIaUUpRoFUujaBZHQIUAA/s3Q2N1fZQoaAZoCWgPQwg7cw8J395cwJSGlFKUaBVNLQFoFkdAhQbYRmK64HV9lChoBmgJaA9DCJinc0XpC3DAlIaUUpRoFU0tAWgWR0CFFFW4EwFldX2UKGgGaAloD0MI203wTdPUZ8CUhpRSlGgVTS0BaBZHQIUWSnHeaa11fZQoaAZoCWgPQwij5qvkY/ddwJSGlFKUaBVNLQFoFkdAhRmIWpIcznV9lChoBmgJaA9DCNP1RNflEYjAlIaUUpRoFU0eAWgWR0CFH/Tuv2XcdX2UKGgGaAloD0MIvCAiNW21hsCUhpRSlGgVS+xoFkdAhSjSjQAuI3V9lChoBmgJaA9DCDkqN1HrYoPAlIaUUpRoFUv6aBZHQIUr/jU/fO51fZQoaAZoCWgPQwhuFi8WZu+EwJSGlFKUaBVL7WgWR0CFLajynUDudX2UKGgGaAloD0MIKA8LtaY9S8CUhpRSlGgVTS0BaBZHQIU9WKVII4V1fZQoaAZoCWgPQwj7lGOyGOeDwJSGlFKUaBVLsWgWR0CFPpL9uP3jdX2UKGgGaAloD0MISYJwBZTxb8CUhpRSlGgVTS0BaBZHQIVItxS5y2h1fZQoaAZoCWgPQwj6eyk86LtpwJSGlFKUaBVNLQFoFkdAhU3fX5FgD3V9lChoBmgJaA9DCM40YftJ0mnAlIaUUpRoFU0tAWgWR0CFl2r/bTMJdX2UKGgGaAloD0MIFF0XfnCPZsCUhpRSlGgVTS0BaBZHQIWYVzfaYeF1fZQoaAZoCWgPQwjMJOoFH7RnwJSGlFKUaBVNLQFoFkdAhZ/HA6+36XV9lChoBmgJaA9DCPgYrDhVvWvAlIaUUpRoFU0tAWgWR0CFpFiPQv6CdX2UKGgGaAloD0MIQz19BN6KhMCUhpRSlGgVTRABaBZHQIWvwNEw35x1fZQoaAZoCWgPQwi2gqYlVi1swJSGlFKUaBVNLQFoFkdAhbNM0P6KtXV9lChoBmgJaA9DCJ/kDpvIP33AlIaUUpRoFUtaaBZHQIW3jZWaMJh1fZQoaAZoCWgPQwiyKsJNRh5mwJSGlFKUaBVNLQFoFkdAhbtXr+o993V9lChoBmgJaA9DCOgyNQkewX3AlIaUUpRoFUtfaBZHQIW7ua6STyJ1fZQoaAZoCWgPQwhyi/m5AY2EwJSGlFKUaBVNHQFoFkdAhb5FUp/gBXV9lChoBmgJaA9DCD/h7Nay9YDAlIaUUpRoFUuJaBZHQIXLjwBo24x1fZQoaAZoCWgPQwgk1AypIpdswJSGlFKUaBVNLQFoFkdAhdMXJo0yg3V9lChoBmgJaA9DCMWtghhIJoTAlIaUUpRoFU0PAWgWR0CF1CuEEkjYdX2UKGgGaAloD0MIOIO/X0zzacCUhpRSlGgVTS0BaBZHQIXWwSzw+dN1fZQoaAZoCWgPQwjzAYHOJGZ9wJSGlFKUaBVLVWgWR0CF2bfReC04dX2UKGgGaAloD0MIDTm2noFrg8CUhpRSlGgVS69oFkdAhdnVQ66renV9lChoBmgJaA9DCGe4AZ8/YITAlIaUUpRoFUvFaBZHQIXiq7ZnL7p1fZQoaAZoCWgPQwgiqBq9+rmHwJSGlFKUaBVL9GgWR0CF58UB4lhPdX2UKGgGaAloD0MIWcFvQ0zRhcCUhpRSlGgVTScBaBZHQIXthwS8J2N1fZQoaAZoCWgPQwjeyhKdZYVuwJSGlFKUaBVNLQFoFkdAhe4EJrtVrHV9lChoBmgJaA9DCC16pwJuVGzAlIaUUpRoFU0tAWgWR0CF+JxHXmNjdX2UKGgGaAloD0MI198SgN/kg8CUhpRSlGgVS7hoFkdAhf5AlOXVsnV9lChoBmgJaA9DCABWR440FXbAlIaUUpRoFU0tAWgWR0CGAMbfgrH3dX2UKGgGaAloD0MI8bkT7L+8bMCUhpRSlGgVTS0BaBZHQIYKUUuctoV1fZQoaAZoCWgPQwiJtmPqLpmAwJSGlFKUaBVLfWgWR0CGDar92ovSdX2UKGgGaAloD0MI8x5nmvAwfcCUhpRSlGgVS1loFkdAhhbnxBmf5HV9lChoBmgJaA9DCC/gZYaNFmvAlIaUUpRoFU0tAWgWR0CGF7dX1anrdX2UKGgGaAloD0MI4443+a0DacCUhpRSlGgVTS0BaBZHQIYcn7Lt/nZ1fZQoaAZoCWgPQwhWSPlJ9QmFwJSGlFKUaBVNFwFoFkdAhiTnxjJ+2HV9lChoBmgJaA9DCMRCrWm+qYLAlIaUUpRoFUvvaBZHQIYr1pZfUnZ1fZQoaAZoCWgPQwj6mXrdIq9vwJSGlFKUaBVNLQFoFkdAhjE4/Vy3kXV9lChoBmgJaA9DCLmKxW9qVIPAlIaUUpRoFUv8aBZHQIYyzKPn0TV1fZQoaAZoCWgPQwi/Q1GgD5Z8wJSGlFKUaBVLVWgWR0CGNDZzxPO6dX2UKGgGaAloD0MI54pSQpBxg8CUhpRSlGgVS7BoFkdAhjTuEug6EXV9lChoBmgJaA9DCFRx4xbzeHzAlIaUUpRoFUtRaBZHQIY5Bi5NGmV1fZQoaAZoCWgPQwhIpG38yS19wJSGlFKUaBVLX2gWR0CGO4G6f8MvdX2UKGgGaAloD0MIyVcCKfEKfsCUhpRSlGgVS2FoFkdAhjzvz4DcM3V9lChoBmgJaA9DCGKCGr5FmIPAlIaUUpRoFUufaBZHQIZ+kyFfzBh1fZQoaAZoCWgPQwg4Ef3aWnODwJSGlFKUaBVLomgWR0CGhnq9oN/fdX2UKGgGaAloD0MIhNkEGNa8hMCUhpRSlGgVS/xoFkdAhoouUUwi7nV9lChoBmgJaA9DCEmERrBxGlLAlIaUUpRoFU0tAWgWR0CGj+JF9a2XdX2UKGgGaAloD0MIyk4/qIs4aMCUhpRSlGgVTS0BaBZHQIaYjQswtap1fZQoaAZoCWgPQwiphCf0+k9iwJSGlFKUaBVNLQFoFkdAhqBwcPvrnnV9lChoBmgJaA9DCJIHIou0jGPAlIaUUpRoFU0tAWgWR0CGpDI1+AmRdX2UKGgGaAloD0MIE0iJXduUbcCUhpRSlGgVTS0BaBZHQIarSN2ki2V1fZQoaAZoCWgPQwh6/Ul87iaEwJSGlFKUaBVNAgFoFkdAhq/NsvZh8nV9lChoBmgJaA9DCG4ZcJZSKYTAlIaUUpRoFUuzaBZHQIaxDsOXmeV1fZQoaAZoCWgPQwgs8BXdOtODwJSGlFKUaBVLtWgWR0CGvUhL5AQhdX2UKGgGaAloD0MIrrfNVIgRg8CUhpRSlGgVTSQBaBZHQIbAd4JNTLp1fZQoaAZoCWgPQwiie9Y1emCDwJSGlFKUaBVLpGgWR0CGwTMGHHmzdX2UKGgGaAloD0MIQQ3fwrragsCUhpRSlGgVS5xoFkdAhst4wqRU3nV9lChoBmgJaA9DCIY41sVttGfAlIaUUpRoFU0tAWgWR0CGy+JhOP/8dX2UKGgGaAloD0MIvrwA+4hjg8CUhpRSlGgVS6toFkdAhs6gvL5h0HV9lChoBmgJaA9DCJVliGNdLBBAlIaUUpRoFU0tAWgWR0CG2MC4BmwrdX2UKGgGaAloD0MIZaa0/pYIg8CUhpRSlGgVTSEBaBZHQIbhAicG1QZ1fZQoaAZoCWgPQwivBb03hvBywJSGlFKUaBVNLQFoFkdAhuMU4zabnXV9lChoBmgJaA9DCEbtfhXgAHXAlIaUUpRoFU0tAWgWR0CG5rGGVRk3dX2UKGgGaAloD0MI0SLb+Z5Ig8CUhpRSlGgVS6xoFkdAhueL8rI5pHV9lChoBmgJaA9DCKD83TuKW4PAlIaUUpRoFUuuaBZHQIb28Yht+Ct1fZQoaAZoCWgPQwgW+mAZG2GDwJSGlFKUaBVNDgFoFkdAhvoQPAfuC3V9lChoBmgJaA9DCG7DKAie5mPAlIaUUpRoFU0tAWgWR0CG/mjua4MGdX2UKGgGaAloD0MIs9MP6iIzccCUhpRSlGgVTS0BaBZHQIcD0x9G7SR1fZQoaAZoCWgPQwjCvp1EBC+DwJSGlFKUaBVLn2gWR0CHDwLpA2Q5dX2UKGgGaAloD0MI4xbzcwOAhsCUhpRSlGgVS+VoFkdAhxDlXaJyhnV9lChoBmgJaA9DCFrz4y8tfG7AlIaUUpRoFU0tAWgWR0CHFS36yjYadX2UKGgGaAloD0MIh8Q9lh5GhMCUhpRSlGgVS7NoFkdAhxZQFcIJJHV9lChoBmgJaA9DCNbiUwAsWITAlIaUUpRoFUuzaBZHQIchhshxHXp1fZQoaAZoCWgPQwgyHxDoTEmEwJSGlFKUaBVLvmgWR0CHJON6PbPAdX2UKGgGaAloD0MIvtwnRyEfhcCUhpRSlGgVS8loFkdAhylvfbblBHV9lChoBmgJaA9DCMPvplsWsYTAlIaUUpRoFUvAaBZHQIcp0EgW8Ad1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.9, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4608ef9240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4608ef92d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4608ef9360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4608ef93f0>", "_build": "<function ActorCriticPolicy._build at 0x7f4608ef9480>", "forward": "<function ActorCriticPolicy.forward at 0x7f4608ef9510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4608ef95a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4608ef9630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4608ef96c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4608ef9750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4608ef97e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4608ef9870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4608ee9ec0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681928005142218419, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAES42UIBA84/AADIQknkkUIAAMhCAADIQgAAyELHsqdCByGJQpB3oEJAAuRC7yXuPwAAyEIAAMhCAADIQgAAyEKd4G1CAADIQoX/cUIAAMhCD2bPQl66vD9jNrJCWFFfQoCOZ0JDsa9CAADIQsWawUIAAMhCAADIQm55hkIF6uk/AADIQg4trULOppdCAADIQgAAyEKHzsFCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkNeDSfHpb8CUhpRSlIwBbJRNLQGMAXSUR0CGDdI3BHkMdX2UKGgGaAloD0MITRHg9A6agsCUhpRSlGgVS4loFkdAhhlcUEgW8HV9lChoBmgJaA9DCI4G8BborILAlIaUUpRoFUuNaBZHQIYc/vv0AcV1fZQoaAZoCWgPQwiUpGsmP4iCwJSGlFKUaBVLiGgWR0CGHVudf9gndX2UKGgGaAloD0MIyLJg4u8egsCUhpRSlGgVS3VoFkdAhiekHUtqYnV9lChoBmgJaA9DCGmrksj+L4bAlIaUUpRoFUvraBZHQIYp0ebNKRN1fZQoaAZoCWgPQwgJNxlVBiKBwJSGlFKUaBVLwGgWR0CGMPTwUg0TdX2UKGgGaAloD0MI6X5OQT4bgsCUhpRSlGgVS5FoFkdAhjWWZqmCRXV9lChoBmgJaA9DCM1Zn3Ls94LAlIaUUpRoFUuLaBZHQIY2yvs7dSF1fZQoaAZoCWgPQwj6YBkbOmpjwJSGlFKUaBVNLQFoFkdAhj1fpMYdhnV9lChoBmgJaA9DCFfMCG9vUYLAlIaUUpRoFUt5aBZHQIY+OK8+Ro11fZQoaAZoCWgPQwiY/E/+bkCDwJSGlFKUaBVLrGgWR0CGUOaDwpfAdX2UKGgGaAloD0MIuVM6WH+yZMCUhpRSlGgVTS0BaBZHQIZYBAQg9vF1fZQoaAZoCWgPQwgKoBhZsgplwJSGlFKUaBVNLQFoFkdAhll8p9ZzP3V9lChoBmgJaA9DCDT4+8XMDoPAlIaUUpRoFUuBaBZHQIZe4ID5j6N1fZQoaAZoCWgPQwgvNNdppDxkwJSGlFKUaBVNLQFoFkdAhl9+u/1xsHV9lChoBmgJaA9DCMe5Tbi36IHAlIaUUpRoFUtuaBZHQIZhShzvJBB1fZQoaAZoCWgPQwgSo+cW2hyCwJSGlFKUaBVLf2gWR0CGZqfywwCbdX2UKGgGaAloD0MIBwlRvuCJhcCUhpRSlGgVS9poFkdAhmg42S+xnnV9lChoBmgJaA9DCDs0LEadv4XAlIaUUpRoFUvxaBZHQIZuV4/u9e11fZQoaAZoCWgPQwgC8E+pklaCwJSGlFKUaBVLcGgWR0CGbw7yQPqcdX2UKGgGaAloD0MIyogLQCPhYsCUhpRSlGgVTS0BaBZHQIZ3xQSBbwB1fZQoaAZoCWgPQwg+eO3SxteBwJSGlFKUaBVLbWgWR0CGeUwosqaxdX2UKGgGaAloD0MI0sYRa7GggsCUhpRSlGgVS4hoFkdAhnvB0p3HJnV9lChoBmgJaA9DCGajc34K/ITAlIaUUpRoFU0jAWgWR0CGgyx4Y77sdX2UKGgGaAloD0MIqnzPSGQ6gMCUhpRSlGgVS7toFkdAhor2JrLyMHV9lChoBmgJaA9DCDBjCtZY6oPAlIaUUpRoFUuhaBZHQIaTdQuVX3h1fZQoaAZoCWgPQwhxdQDEHVCBwJSGlFKUaBVLX2gWR0CGlJtG/etTdX2UKGgGaAloD0MI5geu8oRzbMCUhpRSlGgVTS0BaBZHQIaYlHFxXGR1fZQoaAZoCWgPQwgvih74GGtmwJSGlFKUaBVNLQFoFkdAhpsIJZ4fOnV9lChoBmgJaA9DCONV1jblHYPAlIaUUpRoFUuCaBZHQIajXkFOful1fZQoaAZoCWgPQwhTW+ogTw+DwJSGlFKUaBVLlmgWR0CG5+zN2TxHdX2UKGgGaAloD0MIZ2X7kLcqgsCUhpRSlGgVS4doFkdAhu5Si22G7HV9lChoBmgJaA9DCCeh9IUQBmfAlIaUUpRoFU0tAWgWR0CG8OqZML4OdX2UKGgGaAloD0MII0vmWN6Db8CUhpRSlGgVTS0BaBZHQIb3iSq2jO91fZQoaAZoCWgPQwiSIFwBZc+BwJSGlFKUaBVLbmgWR0CG+tcyFfzCdX2UKGgGaAloD0MIIm5OJUPOgcCUhpRSlGgVS4FoFkdAhwEJFkQPJHV9lChoBmgJaA9DCDRIwVNIkmLAlIaUUpRoFU0tAWgWR0CHAQqNp/PPdX2UKGgGaAloD0MILzIBv0baYMCUhpRSlGgVTS0BaBZHQIcIakZaV2R1fZQoaAZoCWgPQwi0W8tk+BKCwJSGlFKUaBVLjGgWR0CHDgB6KLsKdX2UKGgGaAloD0MIwtoYO+EKX8CUhpRSlGgVTS0BaBZHQIcUbnied091fZQoaAZoCWgPQwj5LM+Du2RpwJSGlFKUaBVNLQFoFkdAhxv/iYLLIXV9lChoBmgJaA9DCAYv+grSKVrAlIaUUpRoFU0tAWgWR0CHIsDPGACodX2UKGgGaAloD0MIhGHAkisXa8CUhpRSlGgVTS0BaBZHQIcnez0HyEt1fZQoaAZoCWgPQwi9qx4wr2eFwJSGlFKUaBVL9WgWR0CHKUrbQC0XdX2UKGgGaAloD0MILdLEO2BvgcCUhpRSlGgVS35oFkdAhzKIGyHEdnV9lChoBmgJaA9DCGO4OgDisWPAlIaUUpRoFU0tAWgWR0CHNfV0cOsldX2UKGgGaAloD0MIzLOSVrzjhMCUhpRSlGgVS+poFkdAhzdCVKPGQ3V9lChoBmgJaA9DCI/Ey9NZA4LAlIaUUpRoFUuAaBZHQIc/Gs3hn8N1fZQoaAZoCWgPQwjzcth9B46BwJSGlFKUaBVLZ2gWR0CHQa8UVSGbdX2UKGgGaAloD0MItaUO8vpvacCUhpRSlGgVTS0BaBZHQIdEkGHHmzV1fZQoaAZoCWgPQwgv+grSrKqCwJSGlFKUaBVLgmgWR0CHTWaUiY9gdX2UKGgGaAloD0MIYMyWrArAYcCUhpRSlGgVTS0BaBZHQIdOZHZsbed1fZQoaAZoCWgPQwi7mdGPBqhmwJSGlFKUaBVNLQFoFkdAh1VPWYnfEXV9lChoBmgJaA9DCBeDh2lfD2DAlIaUUpRoFU0tAWgWR0CHVyV2Rq46dX2UKGgGaAloD0MIdXRcjUzogcCUhpRSlGgVS4ZoFkdAh1eOXE61cHV9lChoBmgJaA9DCJvIzAVuooHAlIaUUpRoFUt6aBZHQIdi5ckdFOR1fZQoaAZoCWgPQwg8+IkD6MVpwJSGlFKUaBVNLQFoFkdAh2jj3Ehq03V9lChoBmgJaA9DCKs/wjAgjYXAlIaUUpRoFUv1aBZHQIdtHrQgLZ11fZQoaAZoCWgPQwhFYoIaPoFjwJSGlFKUaBVNLQFoFkdAh3UoS13MZHV9lChoBmgJaA9DCJGYoIYvI4HAlIaUUpRoFUt7aBZHQId1uQXAM2F1fZQoaAZoCWgPQwh5y9WPTaVVwJSGlFKUaBVNLQFoFkdAh4ESQ5myxHV9lChoBmgJaA9DCOwWgbG+RFfAlIaUUpRoFU0tAWgWR0CHijOO801qdX2UKGgGaAloD0MIHQWIghmLZ8CUhpRSlGgVTS0BaBZHQIeSXk92X9l1fZQoaAZoCWgPQwiPOGQD6UxIQJSGlFKUaBVNLQFoFkdAh5L6d1+y7nV9lChoBmgJaA9DCNb9YyFa84HAlIaUUpRoFUt9aBZHQIeXwP07KaJ1fZQoaAZoCWgPQwiimpKsgxqBwJSGlFKUaBVLdmgWR0CH4qBOpKjBdX2UKGgGaAloD0MIFF6CUx/3ZMCUhpRSlGgVTS0BaBZHQIfi3iR4hU11fZQoaAZoCWgPQwix/Pm28N6RQJSGlFKUaBVLqWgWR0CH8eDIzWPMdX2UKGgGaAloD0MINEsC1NSpZ8CUhpRSlGgVTS0BaBZHQIfyhg7YChh1fZQoaAZoCWgPQwj+R6ZDp9dgwJSGlFKUaBVNLQFoFkdAh/dc94eLenV9lChoBmgJaA9DCCrhCb3+BGPAlIaUUpRoFU0tAWgWR0CH/0THsC1adX2UKGgGaAloD0MIRBX+DI9dgsCUhpRSlGgVTRUBaBZHQIgOnt0FKTV1fZQoaAZoCWgPQwiCN6RRAXdgwJSGlFKUaBVNLQFoFkdAiBDkAYHgP3V9lChoBmgJaA9DCN6tLNHZp2TAlIaUUpRoFU0tAWgWR0CIFbAmiQDFdX2UKGgGaAloD0MIvyuC/60fVMCUhpRSlGgVTS0BaBZHQIgeV0HQhOh1fZQoaAZoCWgPQwhZ3H9k+raBwJSGlFKUaBVL5WgWR0CIJktXgccVdX2UKGgGaAloD0MIcR3jiotzgcCUhpRSlGgVS3VoFkdAiCrb655JLHV9lChoBmgJaA9DCHgq4J7n7U/AlIaUUpRoFU0tAWgWR0CIL2p97WupdX2UKGgGaAloD0MIcM0d/S/oZsCUhpRSlGgVTS0BaBZHQIgzebTc6/91fZQoaAZoCWgPQwgPZD216tSRQJSGlFKUaBVLj2gWR0CIM7aA4GUwdX2UKGgGaAloD0MI3CxeLIzcgMCUhpRSlGgVS2poFkdAiDn/O+qR2nV9lChoBmgJaA9DCHHGMCeIT4XAlIaUUpRoFU0SAWgWR0CIPo+bmU4adX2UKGgGaAloD0MIuoJtxBPWZsCUhpRSlGgVTS0BaBZHQIhEny5I6Kd1fZQoaAZoCWgPQwjO/GoOMLWBwJSGlFKUaBVLcGgWR0CIR04tHxz8dX2UKGgGaAloD0MI9Q63Q8NARUCUhpRSlGgVTS0BaBZHQIhIiUkfLcN1fZQoaAZoCWgPQwguVP613NuBwJSGlFKUaBVLbWgWR0CIUJPqs2ehdX2UKGgGaAloD0MIud42UyFBZMCUhpRSlGgVTS0BaBZHQIhSa+N96Tp1fZQoaAZoCWgPQwhK0F/oEWhnwJSGlFKUaBVNLQFoFkdAiGGYFA3T/nV9lChoBmgJaA9DCM2ueysS9WXAlIaUUpRoFU0tAWgWR0CIZ0bADaGpdX2UKGgGaAloD0MIu2Hbokz1bsCUhpRSlGgVTS0BaBZHQIhxXz+WGAV1fZQoaAZoCWgPQwjU1ohgnAVjwJSGlFKUaBVNLQFoFkdAiHMeNcW0q3V9lChoBmgJaA9DCB3jioujL4LAlIaUUpRoFUtyaBZHQIh8wqLCN0h1fZQoaAZoCWgPQwj8AQ8MIDJcwJSGlFKUaBVNLQFoFkdAiIAtkOI683V9lChoBmgJaA9DCI5bzM/Nc4PAlIaUUpRoFUuXaBZHQIiBD8WKuSx1fZQoaAZoCWgPQwgF/YUeMRZjwJSGlFKUaBVNLQFoFkdAiIT/GVAzHnV9lChoBmgJaA9DCMyZ7QqdgYLAlIaUUpRoFUt+aBZHQIiIMwHqu8t1fZQoaAZoCWgPQwhGzy10xVOBwJSGlFKUaBVLdGgWR0CIkA4b0e2edX2UKGgGaAloD0MIu5f75Ijcg8CUhpRSlGgVS+RoFkdAiJWNeMQ2/HV9lChoBmgJaA9DCNFBl3DoFWPAlIaUUpRoFU0tAWgWR0CInqM2m52AdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "n_steps": 2048, "gamma": 0.9, "gae_lambda": 0.95, "ent_coef": 0.0001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -431.2958435583183, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T11:08:28.947249"}
 
1
+ {"mean_reward": -636.6997394090811, "std_reward": 1.1368683772161603e-13, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T11:26:53.943260"}