ctl's picture
Update README.md
e13ba7f
|
raw
history blame
4.86 kB
language: zh-HK
datasets:
- common_voice
metrics:
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: wav2vec2-large-xlsr-cantonese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice zh-HK
type: common_voice
args: zh-HK
metrics:
- name: Test CER
type: cer
value: 17.81
---
# Wav2Vec2-Large-XLSR-53-Cantonese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Cantonese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import argparse
lang_id = "zh-HK"
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
parser = argparse.ArgumentParser(description='hanles checkpoint loading')
parser.add_argument('--checkpoint', type=str, default=None)
args = parser.parse_args()
model_path = model_id
if args.checkpoint is not None:
model_path += "/checkpoint-" + args.checkpoint
chars_to_ignore_regex = '[\,\?\.\!\-\;\:"\“\%\‘\”\�\.\⋯\!\-\:\–\。\》\,\)\,\?\;\~\~\…\︰\,\(\」\‧\《\﹔\、\—\/\,\「\﹖\·\']'
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
cer = load_metric("./cer")
processor = Wav2Vec2Processor.from_pretrained(f"{model_id}")
model = Wav2Vec2ForCTC.from_pretrained(f"{model_path}")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=16)
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
### Character Error Rate implementation
Adapting code from [wer](https://github.com/huggingface/datasets/blob/master/metrics/wer/wer.py)
```python
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class CER(datasets.Metric):
def _info(self):
...
def _compute(self, predictions, references):
preds = [char for seq in predictions for char in list(seq)]
refs = [char for seq in references for char in list(seq)]
return wer(refs, preds)
```
**Test Result**: 17.81 %
## Training
The Common Voice `train`, `validation` were used for training.
The script used for training will be posted [here](https://github.com/chutaklee/CantoASR)