metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-dv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3520671834625323
whisper-tiny-dv
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6490
- Wer Ortho: 0.3567
- Wer: 0.3521
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho |
---|---|---|---|---|---|
0.022 | 1.0 | 28 | 0.5935 | 0.3605 | 0.3661 |
0.0158 | 2.0 | 56 | 0.6233 | 0.3463 | 0.3499 |
0.0067 | 3.0 | 84 | 0.6469 | 0.3546 | 0.3521 |
0.0066 | 3.57 | 100 | 0.6490 | 0.3567 | 0.3521 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3