Christina Theodoris commited on
Commit
98ce6d7
·
1 Parent(s): 77eb432

Add note to recommend tuning hyperparameters for downstream applications

Browse files
examples/cell_classification.ipynb CHANGED
@@ -176,6 +176,14 @@
176
  " }"
177
  ]
178
  },
 
 
 
 
 
 
 
 
179
  {
180
  "cell_type": "code",
181
  "execution_count": 19,
@@ -187,7 +195,7 @@
187
  "# max input size\n",
188
  "max_input_size = 2 ** 11 # 2048\n",
189
  "\n",
190
- "# set training parameters\n",
191
  "# max learning rate\n",
192
  "max_lr = 5e-5\n",
193
  "# how many pretrained layers to freeze\n",
 
176
  " }"
177
  ]
178
  },
179
+ {
180
+ "cell_type": "markdown",
181
+ "id": "beaab7a4-cc13-4e8f-b137-ed18ff7b633c",
182
+ "metadata": {},
183
+ "source": [
184
+ "### Please note that, as usual with deep learning models, we **highly** recommend tuning learning hyperparameters for all fine-tuning applications as this can significantly improve model performance. Example hyperparameters are defined below, but please see the \"hyperparam_optimiz_for_disease_classifier\" script for an example of how to tune hyperparameters for downstream applications."
185
+ ]
186
+ },
187
  {
188
  "cell_type": "code",
189
  "execution_count": 19,
 
195
  "# max input size\n",
196
  "max_input_size = 2 ** 11 # 2048\n",
197
  "\n",
198
+ "# set training hyperparameters\n",
199
  "# max learning rate\n",
200
  "max_lr = 5e-5\n",
201
  "# how many pretrained layers to freeze\n",
examples/gene_classification.ipynb CHANGED
@@ -444,6 +444,13 @@
444
  "## Fine-Tune With Gene Classification Learning Objective and Quantify Predictive Performance"
445
  ]
446
  },
 
 
 
 
 
 
 
447
  {
448
  "cell_type": "code",
449
  "execution_count": null,
@@ -454,7 +461,7 @@
454
  "# max input size\n",
455
  "max_input_size = 2 ** 11 # 2048\n",
456
  "\n",
457
- "# set training parameters\n",
458
  "# max learning rate\n",
459
  "max_lr = 5e-5\n",
460
  "# how many pretrained layers to freeze\n",
 
444
  "## Fine-Tune With Gene Classification Learning Objective and Quantify Predictive Performance"
445
  ]
446
  },
447
+ {
448
+ "cell_type": "markdown",
449
+ "metadata": {},
450
+ "source": [
451
+ "### Please note that, as usual with deep learning models, we **highly** recommend tuning learning hyperparameters for all fine-tuning applications as this can significantly improve model performance. Example hyperparameters are defined below, but please see the \"hyperparam_optimiz_for_disease_classifier\" script for an example of how to tune hyperparameters for downstream applications."
452
+ ]
453
+ },
454
  {
455
  "cell_type": "code",
456
  "execution_count": null,
 
461
  "# max input size\n",
462
  "max_input_size = 2 ** 11 # 2048\n",
463
  "\n",
464
+ "# set training hyperparameters\n",
465
  "# max learning rate\n",
466
  "max_lr = 5e-5\n",
467
  "# how many pretrained layers to freeze\n",