Commit
·
9169bfd
1
Parent(s):
65b4915
Fixed error with perturbing individual genes and updated ways to specify cell_states_to_model (#146)
Browse files- Fixed error with perturbing individual genes and updated ways to specify cell_states_to_model (771c8bd01b1754c4387d742680e65c34697a2336)
- Fix isp perturb_group dims, reformat cell states dict to keyed, add attn mask (c2679c41d352513a56feb5490c5302c6f25ae7ba)
Co-authored-by: David Wen <davidjwen@users.noreply.huggingface.co>
examples/extract_and_plot_cell_embeddings.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
examples/in_silico_perturbation.ipynb
CHANGED
@@ -33,7 +33,10 @@
|
|
33 |
" emb_mode=\"cell\",\n",
|
34 |
" cell_emb_style=\"mean_pool\",\n",
|
35 |
" filter_data={\"cell_type\":[\"Cardiomyocyte1\",\"Cardiomyocyte2\",\"Cardiomyocyte3\"]},\n",
|
36 |
-
" cell_states_to_model={
|
|
|
|
|
|
|
37 |
" max_ncells=2000,\n",
|
38 |
" emb_layer=0,\n",
|
39 |
" forward_batch_size=400,\n",
|
|
|
33 |
" emb_mode=\"cell\",\n",
|
34 |
" cell_emb_style=\"mean_pool\",\n",
|
35 |
" filter_data={\"cell_type\":[\"Cardiomyocyte1\",\"Cardiomyocyte2\",\"Cardiomyocyte3\"]},\n",
|
36 |
+
" cell_states_to_model={'state_key': 'disease', \n",
|
37 |
+
" 'start_state': 'dcm', \n",
|
38 |
+
" 'goal_state': 'nf', \n",
|
39 |
+
" 'alt_states': ['hcm']},\n",
|
40 |
" max_ncells=2000,\n",
|
41 |
" emb_layer=0,\n",
|
42 |
" forward_batch_size=400,\n",
|
geneformer/emb_extractor.py
CHANGED
@@ -43,32 +43,17 @@ from transformers import BertForMaskedLM, BertForTokenClassification, BertForSeq
|
|
43 |
|
44 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
45 |
|
46 |
-
from .in_silico_perturber import
|
47 |
-
|
|
|
|
|
48 |
load_model, \
|
49 |
-
|
50 |
-
downsample_and_sort, \
|
51 |
pad_tensor_list, \
|
52 |
-
|
53 |
-
|
54 |
|
55 |
logger = logging.getLogger(__name__)
|
56 |
|
57 |
-
# get cell embeddings excluding padding
|
58 |
-
def mean_nonpadding_embs(embs, original_lens):
|
59 |
-
# mask based on padding lengths
|
60 |
-
mask = torch.arange(embs.size(1)).unsqueeze(0).to("cuda") < original_lens.unsqueeze(1)
|
61 |
-
|
62 |
-
# extend mask dimensions to match the embeddings tensor
|
63 |
-
mask = mask.unsqueeze(2).expand_as(embs)
|
64 |
-
|
65 |
-
# use the mask to zero out the embeddings in padded areas
|
66 |
-
masked_embs = embs * mask.float()
|
67 |
-
|
68 |
-
# sum and divide by the lengths to get the mean of non-padding embs
|
69 |
-
mean_embs = masked_embs.sum(1) / original_lens.view(-1, 1).float()
|
70 |
-
return mean_embs
|
71 |
-
|
72 |
# average embedding position of goal cell states
|
73 |
def get_embs(model,
|
74 |
filtered_input_data,
|
@@ -99,7 +84,8 @@ def get_embs(model,
|
|
99 |
|
100 |
with torch.no_grad():
|
101 |
outputs = model(
|
102 |
-
input_ids = input_data_minibatch.to("cuda")
|
|
|
103 |
)
|
104 |
|
105 |
embs_i = outputs.hidden_states[layer_to_quant]
|
|
|
43 |
|
44 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
45 |
|
46 |
+
from .in_silico_perturber import downsample_and_sort, \
|
47 |
+
gen_attention_mask, \
|
48 |
+
get_model_input_size, \
|
49 |
+
load_and_filter, \
|
50 |
load_model, \
|
51 |
+
mean_nonpadding_embs, \
|
|
|
52 |
pad_tensor_list, \
|
53 |
+
quant_layers
|
|
|
54 |
|
55 |
logger = logging.getLogger(__name__)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# average embedding position of goal cell states
|
58 |
def get_embs(model,
|
59 |
filtered_input_data,
|
|
|
84 |
|
85 |
with torch.no_grad():
|
86 |
outputs = model(
|
87 |
+
input_ids = input_data_minibatch.to("cuda"),
|
88 |
+
attention_mask = gen_attention_mask(minibatch)
|
89 |
)
|
90 |
|
91 |
embs_i = outputs.hidden_states[layer_to_quant]
|
geneformer/in_silico_perturber.py
CHANGED
@@ -13,7 +13,7 @@ Usage:
|
|
13 |
emb_mode="cell",
|
14 |
cell_emb_style="mean_pool",
|
15 |
filter_data={"cell_type":["cardiomyocyte"]},
|
16 |
-
cell_states_to_model={"disease":
|
17 |
max_ncells=None,
|
18 |
emb_layer=-1,
|
19 |
forward_batch_size=100,
|
@@ -105,6 +105,13 @@ def downsample_and_sort(data_shuffled, max_ncells):
|
|
105 |
data_sorted = data_subset.sort("length",reverse=True)
|
106 |
return data_sorted
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def forward_pass_single_cell(model, example_cell, layer_to_quant):
|
109 |
example_cell.set_format(type="torch")
|
110 |
input_data = example_cell["input_ids"]
|
@@ -146,6 +153,21 @@ def overexpress_tokens(example):
|
|
146 |
[example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1]]
|
147 |
return example
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def make_perturbation_batch(example_cell,
|
150 |
perturb_type,
|
151 |
tokens_to_perturb,
|
@@ -235,13 +257,15 @@ def get_cell_state_avg_embs(model,
|
|
235 |
num_proc):
|
236 |
|
237 |
model_input_size = get_model_input_size(model)
|
238 |
-
possible_states =
|
239 |
state_embs_dict = dict()
|
240 |
for possible_state in possible_states:
|
241 |
state_embs_list = []
|
|
|
242 |
|
243 |
def filter_states(example):
|
244 |
-
|
|
|
245 |
filtered_input_data_state = filtered_input_data.filter(filter_states, num_proc=num_proc)
|
246 |
total_batch_length = len(filtered_input_data_state)
|
247 |
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
@@ -254,14 +278,17 @@ def get_cell_state_avg_embs(model,
|
|
254 |
state_minibatch.set_format(type="torch")
|
255 |
|
256 |
input_data_minibatch = state_minibatch["input_ids"]
|
|
|
257 |
input_data_minibatch = pad_tensor_list(input_data_minibatch,
|
258 |
max_len,
|
259 |
pad_token_id,
|
260 |
model_input_size)
|
|
|
261 |
|
262 |
with torch.no_grad():
|
263 |
outputs = model(
|
264 |
-
input_ids = input_data_minibatch.to("cuda")
|
|
|
265 |
)
|
266 |
|
267 |
state_embs_i = outputs.hidden_states[layer_to_quant]
|
@@ -269,10 +296,13 @@ def get_cell_state_avg_embs(model,
|
|
269 |
del outputs
|
270 |
del state_minibatch
|
271 |
del input_data_minibatch
|
|
|
272 |
del state_embs_i
|
273 |
torch.cuda.empty_cache()
|
274 |
-
|
275 |
-
|
|
|
|
|
276 |
state_embs_dict[possible_state] = avg_state_emb
|
277 |
return state_embs_dict
|
278 |
|
@@ -291,7 +321,6 @@ def quant_cos_sims(model,
|
|
291 |
pad_token_id,
|
292 |
model_input_size,
|
293 |
nproc):
|
294 |
-
|
295 |
cos = torch.nn.CosineSimilarity(dim=2)
|
296 |
total_batch_length = len(perturbation_batch)
|
297 |
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
@@ -301,7 +330,7 @@ def quant_cos_sims(model,
|
|
301 |
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb, perturb_group)
|
302 |
cos_sims = []
|
303 |
else:
|
304 |
-
possible_states =
|
305 |
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for i in range(len(possible_states))]))
|
306 |
|
307 |
# measure length of each element in perturbation_batch
|
@@ -316,10 +345,12 @@ def quant_cos_sims(model,
|
|
316 |
|
317 |
# determine if need to pad or truncate batch
|
318 |
minibatch_length_set = set(perturbation_minibatch["length"])
|
|
|
319 |
if (len(minibatch_length_set) > 1) or (max(minibatch_length_set) > model_input_size):
|
320 |
needs_pad_or_trunc = True
|
321 |
else:
|
322 |
needs_pad_or_trunc = False
|
|
|
323 |
|
324 |
if needs_pad_or_trunc == True:
|
325 |
max_len = min(max(minibatch_length_set),model_input_size)
|
@@ -332,14 +363,17 @@ def quant_cos_sims(model,
|
|
332 |
perturbation_minibatch.set_format(type="torch")
|
333 |
|
334 |
input_data_minibatch = perturbation_minibatch["input_ids"]
|
|
|
335 |
|
336 |
# extract embeddings for perturbation minibatch
|
337 |
with torch.no_grad():
|
338 |
outputs = model(
|
339 |
-
input_ids = input_data_minibatch.to("cuda")
|
|
|
340 |
)
|
341 |
del input_data_minibatch
|
342 |
del perturbation_minibatch
|
|
|
343 |
|
344 |
if len(indices_to_perturb)>1:
|
345 |
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant])
|
@@ -360,6 +394,7 @@ def quant_cos_sims(model,
|
|
360 |
# truncate to the (model input size - # tokens to overexpress) to ensure comparability
|
361 |
# since max input size of perturb batch will be reduced by # tokens to overexpress
|
362 |
original_minibatch = original_emb.select([i for i in range(i, max_range)])
|
|
|
363 |
original_minibatch_length_set = set(original_minibatch["length"])
|
364 |
if perturb_type == "overexpress":
|
365 |
new_max_len = model_input_size - len(tokens_to_perturb)
|
@@ -373,19 +408,30 @@ def quant_cos_sims(model,
|
|
373 |
original_minibatch = original_minibatch.map(pad_or_trunc_example, num_proc=nproc)
|
374 |
original_minibatch.set_format(type="torch")
|
375 |
original_input_data_minibatch = original_minibatch["input_ids"]
|
|
|
376 |
# extract embeddings for original minibatch
|
377 |
with torch.no_grad():
|
378 |
original_outputs = model(
|
379 |
-
input_ids = original_input_data_minibatch.to("cuda")
|
|
|
380 |
)
|
381 |
del original_input_data_minibatch
|
382 |
del original_minibatch
|
|
|
383 |
|
384 |
if len(indices_to_perturb)>1:
|
385 |
original_minibatch_emb = torch.squeeze(original_outputs.hidden_states[layer_to_quant])
|
386 |
else:
|
387 |
original_minibatch_emb = original_outputs.hidden_states[layer_to_quant]
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
# cosine similarity between original emb and batch items
|
390 |
if cell_states_to_model is None:
|
391 |
if perturb_group == False:
|
@@ -394,6 +440,7 @@ def quant_cos_sims(model,
|
|
394 |
minibatch_comparison = make_comparison_batch(original_minibatch_emb,
|
395 |
indices_to_perturb,
|
396 |
perturb_group)
|
|
|
397 |
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")]
|
398 |
elif cell_states_to_model is not None:
|
399 |
for state in possible_states:
|
@@ -406,7 +453,9 @@ def quant_cos_sims(model,
|
|
406 |
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_minibatch_emb,
|
407 |
minibatch_emb,
|
408 |
state_embs_dict[state],
|
409 |
-
perturb_group
|
|
|
|
|
410 |
del outputs
|
411 |
del minibatch_emb
|
412 |
if cell_states_to_model is None:
|
@@ -421,14 +470,41 @@ def quant_cos_sims(model,
|
|
421 |
return cos_sims_vs_alt_dict
|
422 |
|
423 |
# calculate cos sim shift of perturbation with respect to origin and alternative cell
|
424 |
-
def cos_sim_shift(original_emb,
|
|
|
|
|
|
|
|
|
|
|
425 |
cos = torch.nn.CosineSimilarity(dim=2)
|
426 |
-
|
427 |
-
|
428 |
original_emb = original_emb[None, :]
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
return [(perturb_v_end-origin_v_end).to("cpu")]
|
433 |
|
434 |
def pad_list(input_ids, pad_token_id, max_len):
|
@@ -488,6 +564,30 @@ def pad_tensor_list(tensor_list, dynamic_or_constant, pad_token_id, model_input_
|
|
488 |
# return stacked tensors
|
489 |
return torch.stack(tensor_list)
|
490 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
class InSilicoPerturber:
|
492 |
valid_option_dict = {
|
493 |
"perturb_type": {"delete","overexpress","inhibit","activate"},
|
@@ -573,9 +673,15 @@ class InSilicoPerturber:
|
|
573 |
Otherwise, dictionary specifying .dataset column name and list of values to filter by.
|
574 |
cell_states_to_model: None, dict
|
575 |
Cell states to model if testing perturbations that achieve goal state change.
|
576 |
-
|
577 |
-
|
578 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
max_ncells : None, int
|
580 |
Maximum number of cells to test.
|
581 |
If None, will test all cells.
|
@@ -706,6 +812,17 @@ class InSilicoPerturber:
|
|
706 |
|
707 |
if self.cell_states_to_model is not None:
|
708 |
if len(self.cell_states_to_model.items()) == 1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
709 |
for key,value in self.cell_states_to_model.items():
|
710 |
if (len(value) == 3) and isinstance(value, tuple):
|
711 |
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
@@ -713,14 +830,50 @@ class InSilicoPerturber:
|
|
713 |
all_values = value[0]+value[1]+value[2]
|
714 |
if len(all_values) == len(set(all_values)):
|
715 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
else:
|
717 |
logger.error(
|
718 |
-
"
|
719 |
-
"
|
720 |
-
"
|
721 |
-
|
722 |
-
|
|
|
|
|
|
|
723 |
raise
|
|
|
724 |
if self.anchor_gene is not None:
|
725 |
self.anchor_gene = None
|
726 |
logger.warning(
|
@@ -770,6 +923,14 @@ class InSilicoPerturber:
|
|
770 |
if self.cell_states_to_model is None:
|
771 |
state_embs_dict = None
|
772 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
773 |
# get dictionary of average cell state embeddings for comparison
|
774 |
downsampled_data = downsample_and_sort(filtered_input_data, self.max_ncells)
|
775 |
state_embs_dict = get_cell_state_avg_embs(model,
|
@@ -780,9 +941,9 @@ class InSilicoPerturber:
|
|
780 |
self.forward_batch_size,
|
781 |
self.nproc)
|
782 |
# filter for start state cells
|
783 |
-
start_state =
|
784 |
def filter_for_origin(example):
|
785 |
-
return example[
|
786 |
|
787 |
filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=self.nproc)
|
788 |
|
@@ -878,7 +1039,6 @@ class InSilicoPerturber:
|
|
878 |
# or (perturbed_genes, "cell_emb") for avg cell emb change
|
879 |
cos_sims_data = cos_sims_data.to("cuda")
|
880 |
max_padded_len = cos_sims_data.shape[1]
|
881 |
-
|
882 |
for j in range(cos_sims_data.shape[0]):
|
883 |
# remove padding before mean pooling cell embedding
|
884 |
original_length = original_lengths[j]
|
@@ -900,21 +1060,13 @@ class InSilicoPerturber:
|
|
900 |
# update cos sims dict
|
901 |
# key is tuple of (perturbed_genes, "cell_emb")
|
902 |
# value is list of tuples of cos sims for cell_states_to_model
|
903 |
-
origin_state_key =
|
904 |
cos_sims_origin = cos_sims_data[origin_state_key]
|
905 |
for j in range(cos_sims_origin.shape[0]):
|
906 |
-
original_length = original_lengths[j]
|
907 |
-
max_padded_len = cos_sims_origin.shape[1]
|
908 |
-
indices_removed = indices_to_perturb[j]
|
909 |
-
padding_to_remove = max_padded_len - (original_length \
|
910 |
-
- len(self.tokens_to_perturb) \
|
911 |
-
- len(indices_removed))
|
912 |
data_list = []
|
913 |
for data in list(cos_sims_data.values()):
|
914 |
data_item = data.to("cuda")
|
915 |
-
|
916 |
-
cell_data = torch.mean(nonpadding_data_item).item()
|
917 |
-
data_list += [cell_data]
|
918 |
cos_sims_dict[(perturbed_genes, "cell_emb")] += [tuple(data_list)]
|
919 |
|
920 |
with open(f"{output_path_prefix}_raw.pickle", "wb") as fp:
|
@@ -987,7 +1139,7 @@ class InSilicoPerturber:
|
|
987 |
# update cos sims dict
|
988 |
# key is tuple of (perturbed_gene, "cell_emb")
|
989 |
# value is list of tuples of cos sims for cell_states_to_model
|
990 |
-
origin_state_key =
|
991 |
cos_sims_origin = cos_sims_data[origin_state_key]
|
992 |
|
993 |
for j in range(cos_sims_origin.shape[0]):
|
@@ -1108,5 +1260,4 @@ class InSilicoPerturber:
|
|
1108 |
|
1109 |
# save remainder cells
|
1110 |
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp:
|
1111 |
-
pickle.dump(cos_sims_dict, fp)
|
1112 |
-
|
|
|
13 |
emb_mode="cell",
|
14 |
cell_emb_style="mean_pool",
|
15 |
filter_data={"cell_type":["cardiomyocyte"]},
|
16 |
+
cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]},
|
17 |
max_ncells=None,
|
18 |
emb_layer=-1,
|
19 |
forward_batch_size=100,
|
|
|
105 |
data_sorted = data_subset.sort("length",reverse=True)
|
106 |
return data_sorted
|
107 |
|
108 |
+
def get_possible_states(cell_states_to_model):
|
109 |
+
possible_states = []
|
110 |
+
for key in ["start_state","goal_state"]:
|
111 |
+
possible_states += [cell_states_to_model[key]]
|
112 |
+
possible_states += cell_states_to_model.get("alt_states",[])
|
113 |
+
return possible_states
|
114 |
+
|
115 |
def forward_pass_single_cell(model, example_cell, layer_to_quant):
|
116 |
example_cell.set_format(type="torch")
|
117 |
input_data = example_cell["input_ids"]
|
|
|
153 |
[example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1]]
|
154 |
return example
|
155 |
|
156 |
+
def remove_indices_from_emb(emb, indices_to_remove, gene_dim):
|
157 |
+
# indices_to_remove is list of indices to remove
|
158 |
+
indices_to_keep = [i for i in range(emb.size()[gene_dim]) if i not in indices_to_remove]
|
159 |
+
num_dims = emb.dim()
|
160 |
+
emb_slice = [slice(None) if dim != gene_dim else indices_to_keep for dim in range(num_dims)]
|
161 |
+
sliced_emb = emb[emb_slice]
|
162 |
+
return sliced_emb
|
163 |
+
|
164 |
+
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim):
|
165 |
+
output_batch = torch.stack([
|
166 |
+
remove_indices_from_emb(emb_batch[i, :, :], idx, gene_dim-1) for
|
167 |
+
i, idx in enumerate(list_of_indices_to_remove)
|
168 |
+
])
|
169 |
+
return output_batch
|
170 |
+
|
171 |
def make_perturbation_batch(example_cell,
|
172 |
perturb_type,
|
173 |
tokens_to_perturb,
|
|
|
257 |
num_proc):
|
258 |
|
259 |
model_input_size = get_model_input_size(model)
|
260 |
+
possible_states = get_possible_states(cell_states_to_model)
|
261 |
state_embs_dict = dict()
|
262 |
for possible_state in possible_states:
|
263 |
state_embs_list = []
|
264 |
+
original_lens = []
|
265 |
|
266 |
def filter_states(example):
|
267 |
+
state_key = cell_states_to_model["state_key"]
|
268 |
+
return example[state_key] in [possible_state]
|
269 |
filtered_input_data_state = filtered_input_data.filter(filter_states, num_proc=num_proc)
|
270 |
total_batch_length = len(filtered_input_data_state)
|
271 |
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
|
|
278 |
state_minibatch.set_format(type="torch")
|
279 |
|
280 |
input_data_minibatch = state_minibatch["input_ids"]
|
281 |
+
original_lens += state_minibatch["length"]
|
282 |
input_data_minibatch = pad_tensor_list(input_data_minibatch,
|
283 |
max_len,
|
284 |
pad_token_id,
|
285 |
model_input_size)
|
286 |
+
attention_mask = gen_attention_mask(state_minibatch, max_len)
|
287 |
|
288 |
with torch.no_grad():
|
289 |
outputs = model(
|
290 |
+
input_ids = input_data_minibatch.to("cuda"),
|
291 |
+
attention_mask = attention_mask
|
292 |
)
|
293 |
|
294 |
state_embs_i = outputs.hidden_states[layer_to_quant]
|
|
|
296 |
del outputs
|
297 |
del state_minibatch
|
298 |
del input_data_minibatch
|
299 |
+
del attention_mask
|
300 |
del state_embs_i
|
301 |
torch.cuda.empty_cache()
|
302 |
+
|
303 |
+
state_embs = torch.cat(state_embs_list)
|
304 |
+
avg_state_emb = mean_nonpadding_embs(state_embs, torch.Tensor(original_lens).to("cuda"))
|
305 |
+
avg_state_emb = torch.mean(avg_state_emb, dim=0, keepdim=True)
|
306 |
state_embs_dict[possible_state] = avg_state_emb
|
307 |
return state_embs_dict
|
308 |
|
|
|
321 |
pad_token_id,
|
322 |
model_input_size,
|
323 |
nproc):
|
|
|
324 |
cos = torch.nn.CosineSimilarity(dim=2)
|
325 |
total_batch_length = len(perturbation_batch)
|
326 |
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
|
|
330 |
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb, perturb_group)
|
331 |
cos_sims = []
|
332 |
else:
|
333 |
+
possible_states = get_possible_states(cell_states_to_model)
|
334 |
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for i in range(len(possible_states))]))
|
335 |
|
336 |
# measure length of each element in perturbation_batch
|
|
|
345 |
|
346 |
# determine if need to pad or truncate batch
|
347 |
minibatch_length_set = set(perturbation_minibatch["length"])
|
348 |
+
minibatch_lengths = perturbation_minibatch["length"]
|
349 |
if (len(minibatch_length_set) > 1) or (max(minibatch_length_set) > model_input_size):
|
350 |
needs_pad_or_trunc = True
|
351 |
else:
|
352 |
needs_pad_or_trunc = False
|
353 |
+
max_len = max(minibatch_length_set)
|
354 |
|
355 |
if needs_pad_or_trunc == True:
|
356 |
max_len = min(max(minibatch_length_set),model_input_size)
|
|
|
363 |
perturbation_minibatch.set_format(type="torch")
|
364 |
|
365 |
input_data_minibatch = perturbation_minibatch["input_ids"]
|
366 |
+
attention_mask = gen_attention_mask(perturbation_minibatch, max_len)
|
367 |
|
368 |
# extract embeddings for perturbation minibatch
|
369 |
with torch.no_grad():
|
370 |
outputs = model(
|
371 |
+
input_ids = input_data_minibatch.to("cuda"),
|
372 |
+
attention_mask = attention_mask
|
373 |
)
|
374 |
del input_data_minibatch
|
375 |
del perturbation_minibatch
|
376 |
+
del attention_mask
|
377 |
|
378 |
if len(indices_to_perturb)>1:
|
379 |
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant])
|
|
|
394 |
# truncate to the (model input size - # tokens to overexpress) to ensure comparability
|
395 |
# since max input size of perturb batch will be reduced by # tokens to overexpress
|
396 |
original_minibatch = original_emb.select([i for i in range(i, max_range)])
|
397 |
+
original_minibatch_lengths = original_minibatch["length"]
|
398 |
original_minibatch_length_set = set(original_minibatch["length"])
|
399 |
if perturb_type == "overexpress":
|
400 |
new_max_len = model_input_size - len(tokens_to_perturb)
|
|
|
408 |
original_minibatch = original_minibatch.map(pad_or_trunc_example, num_proc=nproc)
|
409 |
original_minibatch.set_format(type="torch")
|
410 |
original_input_data_minibatch = original_minibatch["input_ids"]
|
411 |
+
attention_mask = gen_attention_mask(original_minibatch, original_max_len)
|
412 |
# extract embeddings for original minibatch
|
413 |
with torch.no_grad():
|
414 |
original_outputs = model(
|
415 |
+
input_ids = original_input_data_minibatch.to("cuda"),
|
416 |
+
attention_mask = attention_mask
|
417 |
)
|
418 |
del original_input_data_minibatch
|
419 |
del original_minibatch
|
420 |
+
del attention_mask
|
421 |
|
422 |
if len(indices_to_perturb)>1:
|
423 |
original_minibatch_emb = torch.squeeze(original_outputs.hidden_states[layer_to_quant])
|
424 |
else:
|
425 |
original_minibatch_emb = original_outputs.hidden_states[layer_to_quant]
|
426 |
+
|
427 |
+
# embedding dimension of the genes
|
428 |
+
gene_dim = 1
|
429 |
+
# exclude overexpression due to case when genes are not expressed but being overexpressed
|
430 |
+
if perturb_type != "overexpress":
|
431 |
+
original_minibatch_emb = remove_indices_from_emb_batch(original_minibatch_emb,
|
432 |
+
indices_to_perturb,
|
433 |
+
gene_dim)
|
434 |
+
|
435 |
# cosine similarity between original emb and batch items
|
436 |
if cell_states_to_model is None:
|
437 |
if perturb_group == False:
|
|
|
440 |
minibatch_comparison = make_comparison_batch(original_minibatch_emb,
|
441 |
indices_to_perturb,
|
442 |
perturb_group)
|
443 |
+
|
444 |
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")]
|
445 |
elif cell_states_to_model is not None:
|
446 |
for state in possible_states:
|
|
|
453 |
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_minibatch_emb,
|
454 |
minibatch_emb,
|
455 |
state_embs_dict[state],
|
456 |
+
perturb_group,
|
457 |
+
torch.tensor(original_minibatch_lengths, device="cuda"),
|
458 |
+
torch.tensor(minibatch_lengths, device="cuda"))
|
459 |
del outputs
|
460 |
del minibatch_emb
|
461 |
if cell_states_to_model is None:
|
|
|
470 |
return cos_sims_vs_alt_dict
|
471 |
|
472 |
# calculate cos sim shift of perturbation with respect to origin and alternative cell
|
473 |
+
def cos_sim_shift(original_emb,
|
474 |
+
minibatch_emb,
|
475 |
+
end_emb,
|
476 |
+
perturb_group,
|
477 |
+
original_minibatch_lengths = None,
|
478 |
+
minibatch_lengths = None):
|
479 |
cos = torch.nn.CosineSimilarity(dim=2)
|
480 |
+
if not perturb_group:
|
481 |
+
original_emb = torch.mean(original_emb,dim=0,keepdim=True)
|
482 |
original_emb = original_emb[None, :]
|
483 |
+
origin_v_end = torch.squeeze(cos(original_emb, end_emb)) #test
|
484 |
+
else:
|
485 |
+
if original_emb.size() != minibatch_emb.size():
|
486 |
+
logger.error(
|
487 |
+
f"Embeddings are not the same dimensions. " \
|
488 |
+
f"original_emb is {original_emb.size()}. " \
|
489 |
+
f"minibatch_emb is {minibatch_emb.size()}. "
|
490 |
+
)
|
491 |
+
raise
|
492 |
+
|
493 |
+
if original_minibatch_lengths is not None:
|
494 |
+
original_emb = mean_nonpadding_embs(original_emb, original_minibatch_lengths)
|
495 |
+
# else:
|
496 |
+
# original_emb = torch.mean(original_emb,dim=1,keepdim=True)
|
497 |
+
|
498 |
+
end_emb = torch.unsqueeze(end_emb, 1)
|
499 |
+
origin_v_end = cos(original_emb, end_emb)
|
500 |
+
origin_v_end = torch.squeeze(origin_v_end)
|
501 |
+
if minibatch_lengths is not None:
|
502 |
+
perturb_emb = mean_nonpadding_embs(minibatch_emb, minibatch_lengths)
|
503 |
+
else:
|
504 |
+
perturb_emb = torch.mean(minibatch_emb,dim=1,keepdim=True)
|
505 |
+
|
506 |
+
perturb_v_end = cos(perturb_emb, end_emb)
|
507 |
+
perturb_v_end = torch.squeeze(perturb_v_end)
|
508 |
return [(perturb_v_end-origin_v_end).to("cpu")]
|
509 |
|
510 |
def pad_list(input_ids, pad_token_id, max_len):
|
|
|
564 |
# return stacked tensors
|
565 |
return torch.stack(tensor_list)
|
566 |
|
567 |
+
def gen_attention_mask(minibatch_encoding, max_len = None):
|
568 |
+
if max_len == None:
|
569 |
+
max_len = max(minibatch_encoding["length"])
|
570 |
+
original_lens = minibatch_encoding["length"]
|
571 |
+
attention_mask = [[1]*original_len
|
572 |
+
+[0]*(max_len - original_len)
|
573 |
+
for original_len in original_lens]
|
574 |
+
return torch.tensor(attention_mask).to("cuda")
|
575 |
+
|
576 |
+
# get cell embeddings excluding padding
|
577 |
+
def mean_nonpadding_embs(embs, original_lens):
|
578 |
+
# mask based on padding lengths
|
579 |
+
mask = torch.arange(embs.size(1)).unsqueeze(0).to("cuda") < original_lens.unsqueeze(1)
|
580 |
+
|
581 |
+
# extend mask dimensions to match the embeddings tensor
|
582 |
+
mask = mask.unsqueeze(2).expand_as(embs)
|
583 |
+
|
584 |
+
# use the mask to zero out the embeddings in padded areas
|
585 |
+
masked_embs = embs * mask.float()
|
586 |
+
|
587 |
+
# sum and divide by the lengths to get the mean of non-padding embs
|
588 |
+
mean_embs = masked_embs.sum(1) / original_lens.view(-1, 1).float()
|
589 |
+
return mean_embs
|
590 |
+
|
591 |
class InSilicoPerturber:
|
592 |
valid_option_dict = {
|
593 |
"perturb_type": {"delete","overexpress","inhibit","activate"},
|
|
|
673 |
Otherwise, dictionary specifying .dataset column name and list of values to filter by.
|
674 |
cell_states_to_model: None, dict
|
675 |
Cell states to model if testing perturbations that achieve goal state change.
|
676 |
+
Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
|
677 |
+
state_key: key specifying name of column in .dataset that defines the start/goal states
|
678 |
+
start_state: value in the state_key column that specifies the start state
|
679 |
+
goal_state: value in the state_key column taht specifies the goal end state
|
680 |
+
alt_states: list of values in the state_key column that specify the alternate end states
|
681 |
+
For example: {"state_key": "disease",
|
682 |
+
"start_state": "dcm",
|
683 |
+
"goal_state": "nf",
|
684 |
+
"alt_states": ["hcm", "other1", "other2"]}
|
685 |
max_ncells : None, int
|
686 |
Maximum number of cells to test.
|
687 |
If None, will test all cells.
|
|
|
812 |
|
813 |
if self.cell_states_to_model is not None:
|
814 |
if len(self.cell_states_to_model.items()) == 1:
|
815 |
+
logger.warning(
|
816 |
+
"The single value dictionary for cell_states_to_model will be " \
|
817 |
+
"replaced with a dictionary with named keys for start, goal, and alternate states. " \
|
818 |
+
"Please specify state_key, start_state, goal_state, and alt_states " \
|
819 |
+
"in the cell_states_to_model dictionary for future use. " \
|
820 |
+
"For example, cell_states_to_model={" \
|
821 |
+
"'state_key': 'disease', " \
|
822 |
+
"'start_state': 'dcm', " \
|
823 |
+
"'goal_state': 'nf', " \
|
824 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
825 |
+
)
|
826 |
for key,value in self.cell_states_to_model.items():
|
827 |
if (len(value) == 3) and isinstance(value, tuple):
|
828 |
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
|
|
830 |
all_values = value[0]+value[1]+value[2]
|
831 |
if len(all_values) == len(set(all_values)):
|
832 |
continue
|
833 |
+
# reformat to the new named key format
|
834 |
+
state_values = flatten_list(list(self.cell_states_to_model.values()))
|
835 |
+
self.cell_states_to_model = {
|
836 |
+
"state_key": list(self.cell_states_to_model.keys())[0],
|
837 |
+
"start_state": state_values[0][0],
|
838 |
+
"goal_state": state_values[1][0],
|
839 |
+
"alt_states": state_values[2:][0]
|
840 |
+
}
|
841 |
+
elif set(self.cell_states_to_model.keys()) == {"state_key", "start_state", "goal_state", "alt_states"}:
|
842 |
+
if (self.cell_states_to_model["state_key"] is None) \
|
843 |
+
or (self.cell_states_to_model["start_state"] is None) \
|
844 |
+
or (self.cell_states_to_model["goal_state"] is None):
|
845 |
+
logger.error(
|
846 |
+
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model.")
|
847 |
+
raise
|
848 |
+
|
849 |
+
if self.cell_states_to_model["start_state"] == self.cell_states_to_model["goal_state"]:
|
850 |
+
logger.error(
|
851 |
+
"All states must be unique.")
|
852 |
+
raise
|
853 |
+
|
854 |
+
if self.cell_states_to_model["alt_states"] is not None:
|
855 |
+
if type(self.cell_states_to_model["alt_states"]) is not list:
|
856 |
+
logger.error(
|
857 |
+
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
|
858 |
+
)
|
859 |
+
raise
|
860 |
+
if len(self.cell_states_to_model["alt_states"])!= len(set(self.cell_states_to_model["alt_states"])):
|
861 |
+
logger.error(
|
862 |
+
"All states must be unique.")
|
863 |
+
raise
|
864 |
+
|
865 |
else:
|
866 |
logger.error(
|
867 |
+
"cell_states_to_model must only have the following four keys: " \
|
868 |
+
"'state_key', 'start_state', 'goal_state', 'alt_states'." \
|
869 |
+
"For example, cell_states_to_model={" \
|
870 |
+
"'state_key': 'disease', " \
|
871 |
+
"'start_state': 'dcm', " \
|
872 |
+
"'goal_state': 'nf', " \
|
873 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
874 |
+
)
|
875 |
raise
|
876 |
+
|
877 |
if self.anchor_gene is not None:
|
878 |
self.anchor_gene = None
|
879 |
logger.warning(
|
|
|
923 |
if self.cell_states_to_model is None:
|
924 |
state_embs_dict = None
|
925 |
else:
|
926 |
+
# confirm that all states are valid to prevent futile filtering
|
927 |
+
state_name = self.cell_states_to_model["state_key"]
|
928 |
+
state_values = filtered_input_data[state_name]
|
929 |
+
for value in get_possible_states(self.cell_states_to_model):
|
930 |
+
if value not in state_values:
|
931 |
+
logger.error(
|
932 |
+
f"{value} is not present in the dataset's {state_name} attribute.")
|
933 |
+
raise
|
934 |
# get dictionary of average cell state embeddings for comparison
|
935 |
downsampled_data = downsample_and_sort(filtered_input_data, self.max_ncells)
|
936 |
state_embs_dict = get_cell_state_avg_embs(model,
|
|
|
941 |
self.forward_batch_size,
|
942 |
self.nproc)
|
943 |
# filter for start state cells
|
944 |
+
start_state = self.cell_states_to_model["start_state"]
|
945 |
def filter_for_origin(example):
|
946 |
+
return example[state_name] in [start_state]
|
947 |
|
948 |
filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=self.nproc)
|
949 |
|
|
|
1039 |
# or (perturbed_genes, "cell_emb") for avg cell emb change
|
1040 |
cos_sims_data = cos_sims_data.to("cuda")
|
1041 |
max_padded_len = cos_sims_data.shape[1]
|
|
|
1042 |
for j in range(cos_sims_data.shape[0]):
|
1043 |
# remove padding before mean pooling cell embedding
|
1044 |
original_length = original_lengths[j]
|
|
|
1060 |
# update cos sims dict
|
1061 |
# key is tuple of (perturbed_genes, "cell_emb")
|
1062 |
# value is list of tuples of cos sims for cell_states_to_model
|
1063 |
+
origin_state_key = self.cell_states_to_model["start_state"]
|
1064 |
cos_sims_origin = cos_sims_data[origin_state_key]
|
1065 |
for j in range(cos_sims_origin.shape[0]):
|
|
|
|
|
|
|
|
|
|
|
|
|
1066 |
data_list = []
|
1067 |
for data in list(cos_sims_data.values()):
|
1068 |
data_item = data.to("cuda")
|
1069 |
+
data_list += [data_item[j].item()]
|
|
|
|
|
1070 |
cos_sims_dict[(perturbed_genes, "cell_emb")] += [tuple(data_list)]
|
1071 |
|
1072 |
with open(f"{output_path_prefix}_raw.pickle", "wb") as fp:
|
|
|
1139 |
# update cos sims dict
|
1140 |
# key is tuple of (perturbed_gene, "cell_emb")
|
1141 |
# value is list of tuples of cos sims for cell_states_to_model
|
1142 |
+
origin_state_key = self.cell_states_to_model["start_state"]
|
1143 |
cos_sims_origin = cos_sims_data[origin_state_key]
|
1144 |
|
1145 |
for j in range(cos_sims_origin.shape[0]):
|
|
|
1260 |
|
1261 |
# save remainder cells
|
1262 |
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp:
|
1263 |
+
pickle.dump(cos_sims_dict, fp)
|
|
geneformer/in_silico_perturber_stats.py
CHANGED
@@ -6,7 +6,10 @@ Usage:
|
|
6 |
ispstats = InSilicoPerturberStats(mode="goal_state_shift",
|
7 |
combos=0,
|
8 |
anchor_gene=None,
|
9 |
-
cell_states_to_model={"
|
|
|
|
|
|
|
10 |
ispstats.get_stats("path/to/input_data",
|
11 |
None,
|
12 |
"path/to/output_directory",
|
@@ -26,6 +29,8 @@ from scipy.stats import ranksums
|
|
26 |
from sklearn.mixture import GaussianMixture
|
27 |
from tqdm.notebook import trange, tqdm
|
28 |
|
|
|
|
|
29 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
30 |
|
31 |
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
@@ -123,10 +128,10 @@ def isp_aggregate_grouped_perturb(cos_sims_df, dict_list):
|
|
123 |
|
124 |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
125 |
def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model, genes_perturbed):
|
126 |
-
cell_state_key =
|
127 |
-
if
|
128 |
alt_end_state_exists = False
|
129 |
-
elif (len(cell_states_to_model[
|
130 |
alt_end_state_exists = True
|
131 |
|
132 |
# for single perturbation in multiple cells, there are no random perturbations to compare to
|
@@ -231,10 +236,12 @@ def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model, genes_
|
|
231 |
# quantify number of detections of each gene
|
232 |
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]]
|
233 |
|
234 |
-
# sort by shift to desired state
|
235 |
-
cos_sims_full_df = cos_sims_full_df
|
|
|
|
|
236 |
"Goal_end_FDR"],
|
237 |
-
ascending=[False,True])
|
238 |
|
239 |
return cos_sims_full_df
|
240 |
|
@@ -272,9 +279,11 @@ def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
|
|
272 |
|
273 |
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(cos_sims_full_df["Test_vs_null_pval"])
|
274 |
|
275 |
-
cos_sims_full_df = cos_sims_full_df
|
|
|
|
|
276 |
"Test_vs_null_FDR"],
|
277 |
-
ascending=[False,True])
|
278 |
return cos_sims_full_df
|
279 |
|
280 |
# stats for identifying perturbations with largest effect within a given set of cells
|
@@ -441,9 +450,15 @@ class InSilicoPerturberStats:
|
|
441 |
analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
|
442 |
cell_states_to_model: None, dict
|
443 |
Cell states to model if testing perturbations that achieve goal state change.
|
444 |
-
|
445 |
-
|
446 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
token_dictionary_file : Path
|
448 |
Path to pickle file containing token dictionary (Ensembl ID:token).
|
449 |
gene_name_id_dictionary_file : Path
|
@@ -494,6 +509,17 @@ class InSilicoPerturberStats:
|
|
494 |
|
495 |
if self.cell_states_to_model is not None:
|
496 |
if len(self.cell_states_to_model.items()) == 1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
for key,value in self.cell_states_to_model.items():
|
498 |
if (len(value) == 3) and isinstance(value, tuple):
|
499 |
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
@@ -501,14 +527,50 @@ class InSilicoPerturberStats:
|
|
501 |
all_values = value[0]+value[1]+value[2]
|
502 |
if len(all_values) == len(set(all_values)):
|
503 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
else:
|
505 |
logger.error(
|
506 |
-
"
|
507 |
-
"
|
508 |
-
"
|
509 |
-
|
510 |
-
|
|
|
|
|
|
|
511 |
raise
|
|
|
512 |
if self.anchor_gene is not None:
|
513 |
self.anchor_gene = None
|
514 |
logger.warning(
|
@@ -565,6 +627,7 @@ class InSilicoPerturberStats:
|
|
565 |
"Gene_name": gene name
|
566 |
"Ensembl_ID": gene Ensembl ID
|
567 |
"N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
|
|
|
568 |
|
569 |
"Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
|
570 |
"Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
|
|
|
6 |
ispstats = InSilicoPerturberStats(mode="goal_state_shift",
|
7 |
combos=0,
|
8 |
anchor_gene=None,
|
9 |
+
cell_states_to_model={"state_key": "disease",
|
10 |
+
"start_state": "dcm",
|
11 |
+
"goal_state": "nf",
|
12 |
+
"alt_states": ["hcm", "other1", "other2"]})
|
13 |
ispstats.get_stats("path/to/input_data",
|
14 |
None,
|
15 |
"path/to/output_directory",
|
|
|
29 |
from sklearn.mixture import GaussianMixture
|
30 |
from tqdm.notebook import trange, tqdm
|
31 |
|
32 |
+
from .in_silico_perturber import flatten_list
|
33 |
+
|
34 |
from .tokenizer import TOKEN_DICTIONARY_FILE
|
35 |
|
36 |
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
|
|
128 |
|
129 |
# stats comparing cos sim shifts towards goal state of test perturbations vs random perturbations
|
130 |
def isp_stats_to_goal_state(cos_sims_df, dict_list, cell_states_to_model, genes_perturbed):
|
131 |
+
cell_state_key = cell_states_to_model["start_state"]
|
132 |
+
if "alt_states" not in cell_states_to_model.keys():
|
133 |
alt_end_state_exists = False
|
134 |
+
elif (len(cell_states_to_model["alt_states"]) > 0) and (cell_states_to_model["alt_states"] != [None]):
|
135 |
alt_end_state_exists = True
|
136 |
|
137 |
# for single perturbation in multiple cells, there are no random perturbations to compare to
|
|
|
236 |
# quantify number of detections of each gene
|
237 |
cos_sims_full_df["N_Detections"] = [n_detections(i, dict_list, "cell", None) for i in cos_sims_full_df["Gene"]]
|
238 |
|
239 |
+
# sort by shift to desired state\
|
240 |
+
cos_sims_full_df["Sig"] = [1 if fdr<0.05 else 0 for fdr in cos_sims_full_df["Goal_end_FDR"]]
|
241 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Sig",
|
242 |
+
"Shift_to_goal_end",
|
243 |
"Goal_end_FDR"],
|
244 |
+
ascending=[False,False,True])
|
245 |
|
246 |
return cos_sims_full_df
|
247 |
|
|
|
279 |
|
280 |
cos_sims_full_df["Test_vs_null_FDR"] = get_fdr(cos_sims_full_df["Test_vs_null_pval"])
|
281 |
|
282 |
+
cos_sims_full_df["Sig"] = [1 if fdr<0.05 else 0 for fdr in cos_sims_full_df["Test_vs_null_FDR"]]
|
283 |
+
cos_sims_full_df = cos_sims_full_df.sort_values(by=["Sig",
|
284 |
+
"Test_vs_null_avg_shift",
|
285 |
"Test_vs_null_FDR"],
|
286 |
+
ascending=[False,False,True])
|
287 |
return cos_sims_full_df
|
288 |
|
289 |
# stats for identifying perturbations with largest effect within a given set of cells
|
|
|
450 |
analyzes data for the effect of anchor gene's perturbation on the embedding of each other gene.
|
451 |
cell_states_to_model: None, dict
|
452 |
Cell states to model if testing perturbations that achieve goal state change.
|
453 |
+
Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states
|
454 |
+
state_key: key specifying name of column in .dataset that defines the start/goal states
|
455 |
+
start_state: value in the state_key column that specifies the start state
|
456 |
+
goal_state: value in the state_key column taht specifies the goal end state
|
457 |
+
alt_states: list of values in the state_key column that specify the alternate end states
|
458 |
+
For example: {"state_key": "disease",
|
459 |
+
"start_state": "dcm",
|
460 |
+
"goal_state": "nf",
|
461 |
+
"alt_states": ["hcm", "other1", "other2"]}
|
462 |
token_dictionary_file : Path
|
463 |
Path to pickle file containing token dictionary (Ensembl ID:token).
|
464 |
gene_name_id_dictionary_file : Path
|
|
|
509 |
|
510 |
if self.cell_states_to_model is not None:
|
511 |
if len(self.cell_states_to_model.items()) == 1:
|
512 |
+
logger.warning(
|
513 |
+
"The single value dictionary for cell_states_to_model will be " \
|
514 |
+
"replaced with a dictionary with named keys for start, goal, and alternate states. " \
|
515 |
+
"Please specify state_key, start_state, goal_state, and alt_states " \
|
516 |
+
"in the cell_states_to_model dictionary for future use. " \
|
517 |
+
"For example, cell_states_to_model={" \
|
518 |
+
"'state_key': 'disease', " \
|
519 |
+
"'start_state': 'dcm', " \
|
520 |
+
"'goal_state': 'nf', " \
|
521 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
522 |
+
)
|
523 |
for key,value in self.cell_states_to_model.items():
|
524 |
if (len(value) == 3) and isinstance(value, tuple):
|
525 |
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
|
|
527 |
all_values = value[0]+value[1]+value[2]
|
528 |
if len(all_values) == len(set(all_values)):
|
529 |
continue
|
530 |
+
# reformat to the new named key format
|
531 |
+
state_values = flatten_list(list(self.cell_states_to_model.values()))
|
532 |
+
self.cell_states_to_model = {
|
533 |
+
"state_key": list(self.cell_states_to_model.keys())[0],
|
534 |
+
"start_state": state_values[0][0],
|
535 |
+
"goal_state": state_values[1][0],
|
536 |
+
"alt_states": state_values[2:][0]
|
537 |
+
}
|
538 |
+
elif set(self.cell_states_to_model.keys()) == {"state_key", "start_state", "goal_state", "alt_states"}:
|
539 |
+
if (self.cell_states_to_model["state_key"] is None) \
|
540 |
+
or (self.cell_states_to_model["start_state"] is None) \
|
541 |
+
or (self.cell_states_to_model["goal_state"] is None):
|
542 |
+
logger.error(
|
543 |
+
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model.")
|
544 |
+
raise
|
545 |
+
|
546 |
+
if self.cell_states_to_model["start_state"] == self.cell_states_to_model["goal_state"]:
|
547 |
+
logger.error(
|
548 |
+
"All states must be unique.")
|
549 |
+
raise
|
550 |
+
|
551 |
+
if self.cell_states_to_model["alt_states"] is not None:
|
552 |
+
if type(self.cell_states_to_model["alt_states"]) is not list:
|
553 |
+
logger.error(
|
554 |
+
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)."
|
555 |
+
)
|
556 |
+
raise
|
557 |
+
if len(self.cell_states_to_model["alt_states"])!= len(set(self.cell_states_to_model["alt_states"])):
|
558 |
+
logger.error(
|
559 |
+
"All states must be unique.")
|
560 |
+
raise
|
561 |
+
|
562 |
else:
|
563 |
logger.error(
|
564 |
+
"cell_states_to_model must only have the following four keys: " \
|
565 |
+
"'state_key', 'start_state', 'goal_state', 'alt_states'." \
|
566 |
+
"For example, cell_states_to_model={" \
|
567 |
+
"'state_key': 'disease', " \
|
568 |
+
"'start_state': 'dcm', " \
|
569 |
+
"'goal_state': 'nf', " \
|
570 |
+
"'alt_states': ['hcm', 'other1', 'other2']}"
|
571 |
+
)
|
572 |
raise
|
573 |
+
|
574 |
if self.anchor_gene is not None:
|
575 |
self.anchor_gene = None
|
576 |
logger.warning(
|
|
|
627 |
"Gene_name": gene name
|
628 |
"Ensembl_ID": gene Ensembl ID
|
629 |
"N_Detections": number of cells in which each gene or gene combination was detected in the input dataset
|
630 |
+
"Sig": 1 if FDR<0.05, otherwise 0
|
631 |
|
632 |
"Shift_to_goal_end": cosine shift from start state towards goal end state in response to given perturbation
|
633 |
"Shift_to_alt_end": cosine shift from start state towards alternate end state in response to given perturbation
|