Christina Theodoris
commited on
Commit
·
57b9778
1
Parent(s):
acd253c
Update tokenizer to allow tokenization without custom cell attributes
Browse files- geneformer/tokenizer.py +21 -12
geneformer/tokenizer.py
CHANGED
@@ -42,7 +42,7 @@ def tokenize_cell(gene_vector, gene_tokens):
|
|
42 |
class TranscriptomeTokenizer:
|
43 |
def __init__(
|
44 |
self,
|
45 |
-
custom_attr_name_dict,
|
46 |
nproc=1,
|
47 |
gene_median_file=GENE_MEDIAN_FILE,
|
48 |
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
@@ -52,7 +52,7 @@ class TranscriptomeTokenizer:
|
|
52 |
|
53 |
Parameters
|
54 |
----------
|
55 |
-
custom_attr_name_dict : dict
|
56 |
Dictionary of custom attributes to be added to the dataset.
|
57 |
Keys are the names of the attributes in the loom file.
|
58 |
Values are the names of the attributes in the dataset.
|
@@ -106,8 +106,9 @@ class TranscriptomeTokenizer:
|
|
106 |
|
107 |
def tokenize_files(self, loom_data_directory):
|
108 |
tokenized_cells = []
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
# loops through directories to tokenize .loom files
|
113 |
for loom_file_path in loom_data_directory.glob("*.loom"):
|
@@ -116,15 +117,19 @@ class TranscriptomeTokenizer:
|
|
116 |
loom_file_path
|
117 |
)
|
118 |
tokenized_cells += file_tokenized_cells
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
121 |
|
122 |
return tokenized_cells, cell_metadata
|
123 |
|
124 |
def tokenize_file(self, loom_file_path):
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
128 |
|
129 |
with lp.connect(str(loom_file_path)) as data:
|
130 |
# define coordinates of detected protein-coding or miRNA genes and vector of their normalization factors
|
@@ -181,15 +186,19 @@ class TranscriptomeTokenizer:
|
|
181 |
]
|
182 |
|
183 |
# add custom attributes for subview to dict
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
186 |
|
187 |
return tokenized_cells, file_cell_metadata
|
188 |
|
189 |
def create_dataset(self, tokenized_cells, cell_metadata):
|
190 |
# create dict for dataset creation
|
191 |
dataset_dict = {"input_ids": tokenized_cells}
|
192 |
-
|
|
|
193 |
|
194 |
# create dataset
|
195 |
output_dataset = Dataset.from_dict(dataset_dict)
|
|
|
42 |
class TranscriptomeTokenizer:
|
43 |
def __init__(
|
44 |
self,
|
45 |
+
custom_attr_name_dict=None,
|
46 |
nproc=1,
|
47 |
gene_median_file=GENE_MEDIAN_FILE,
|
48 |
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
|
|
52 |
|
53 |
Parameters
|
54 |
----------
|
55 |
+
custom_attr_name_dict : None, dict
|
56 |
Dictionary of custom attributes to be added to the dataset.
|
57 |
Keys are the names of the attributes in the loom file.
|
58 |
Values are the names of the attributes in the dataset.
|
|
|
106 |
|
107 |
def tokenize_files(self, loom_data_directory):
|
108 |
tokenized_cells = []
|
109 |
+
if self.custom_attr_name_dict is not None:
|
110 |
+
loom_cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
|
111 |
+
cell_metadata = {attr_key: [] for attr_key in self.custom_attr_name_dict.values()}
|
112 |
|
113 |
# loops through directories to tokenize .loom files
|
114 |
for loom_file_path in loom_data_directory.glob("*.loom"):
|
|
|
117 |
loom_file_path
|
118 |
)
|
119 |
tokenized_cells += file_tokenized_cells
|
120 |
+
if self.custom_attr_name_dict is not None:
|
121 |
+
for k in loom_cell_attr:
|
122 |
+
cell_metadata[self.custom_attr_name_dict[k]] += file_cell_metadata[k]
|
123 |
+
else:
|
124 |
+
cell_metadata = None
|
125 |
|
126 |
return tokenized_cells, cell_metadata
|
127 |
|
128 |
def tokenize_file(self, loom_file_path):
|
129 |
+
if self.custom_attr_name_dict is not None:
|
130 |
+
file_cell_metadata = {
|
131 |
+
attr_key: [] for attr_key in self.custom_attr_name_dict.keys()
|
132 |
+
}
|
133 |
|
134 |
with lp.connect(str(loom_file_path)) as data:
|
135 |
# define coordinates of detected protein-coding or miRNA genes and vector of their normalization factors
|
|
|
186 |
]
|
187 |
|
188 |
# add custom attributes for subview to dict
|
189 |
+
if self.custom_attr_name_dict is not None:
|
190 |
+
for k in file_cell_metadata.keys():
|
191 |
+
file_cell_metadata[k] += subview.ca[k].tolist()
|
192 |
+
else:
|
193 |
+
file_cell_metadata = None
|
194 |
|
195 |
return tokenized_cells, file_cell_metadata
|
196 |
|
197 |
def create_dataset(self, tokenized_cells, cell_metadata):
|
198 |
# create dict for dataset creation
|
199 |
dataset_dict = {"input_ids": tokenized_cells}
|
200 |
+
if self.custom_attr_name_dict is not None:
|
201 |
+
dataset_dict.update(cell_metadata)
|
202 |
|
203 |
# create dataset
|
204 |
output_dataset = Dataset.from_dict(dataset_dict)
|