Christina Theodoris
Fix isp perturb_group dims, reformat cell states dict to keyed, add attn mask
c2679c4
""" | |
Geneformer in silico perturber. | |
Usage: | |
from geneformer import InSilicoPerturber | |
isp = InSilicoPerturber(perturb_type="delete", | |
perturb_rank_shift=None, | |
genes_to_perturb="all", | |
combos=0, | |
anchor_gene=None, | |
model_type="Pretrained", | |
num_classes=0, | |
emb_mode="cell", | |
cell_emb_style="mean_pool", | |
filter_data={"cell_type":["cardiomyocyte"]}, | |
cell_states_to_model={"state_key": "disease", "start_state": "dcm", "goal_state": "nf", "alt_states": ["hcm", "other1", "other2"]}, | |
max_ncells=None, | |
emb_layer=-1, | |
forward_batch_size=100, | |
nproc=4) | |
isp.perturb_data("path/to/model", | |
"path/to/input_data", | |
"path/to/output_directory", | |
"output_prefix") | |
""" | |
# imports | |
import itertools as it | |
import logging | |
import numpy as np | |
import pickle | |
import re | |
import seaborn as sns; sns.set() | |
import torch | |
from collections import defaultdict | |
from datasets import Dataset, load_from_disk | |
from tqdm.notebook import trange | |
from transformers import BertForMaskedLM, BertForTokenClassification, BertForSequenceClassification | |
from .tokenizer import TOKEN_DICTIONARY_FILE | |
logger = logging.getLogger(__name__) | |
# load data and filter by defined criteria | |
def load_and_filter(filter_data, nproc, input_data_file): | |
data = load_from_disk(input_data_file) | |
if filter_data is not None: | |
for key,value in filter_data.items(): | |
def filter_data_by_criteria(example): | |
return example[key] in value | |
data = data.filter(filter_data_by_criteria, num_proc=nproc) | |
if len(data) == 0: | |
logger.error( | |
"No cells remain after filtering. Check filtering criteria.") | |
raise | |
data_shuffled = data.shuffle(seed=42) | |
return data_shuffled | |
# load model to GPU | |
def load_model(model_type, num_classes, model_directory): | |
if model_type == "Pretrained": | |
model = BertForMaskedLM.from_pretrained(model_directory, | |
output_hidden_states=True, | |
output_attentions=False) | |
elif model_type == "GeneClassifier": | |
model = BertForTokenClassification.from_pretrained(model_directory, | |
num_labels=num_classes, | |
output_hidden_states=True, | |
output_attentions=False) | |
elif model_type == "CellClassifier": | |
model = BertForSequenceClassification.from_pretrained(model_directory, | |
num_labels=num_classes, | |
output_hidden_states=True, | |
output_attentions=False) | |
# put the model in eval mode for fwd pass | |
model.eval() | |
model = model.to("cuda:0") | |
return model | |
def quant_layers(model): | |
layer_nums = [] | |
for name, parameter in model.named_parameters(): | |
if "layer" in name: | |
layer_nums += [int(name.split("layer.")[1].split(".")[0])] | |
return int(max(layer_nums))+1 | |
def get_model_input_size(model): | |
return int(re.split("\(|,",str(model.bert.embeddings.position_embeddings))[1]) | |
def flatten_list(megalist): | |
return [item for sublist in megalist for item in sublist] | |
def measure_length(example): | |
example["length"] = len(example["input_ids"]) | |
return example | |
def downsample_and_sort(data_shuffled, max_ncells): | |
num_cells = len(data_shuffled) | |
# if max number of cells is defined, then subsample to this max number | |
if max_ncells != None: | |
num_cells = min(max_ncells,num_cells) | |
data_subset = data_shuffled.select([i for i in range(num_cells)]) | |
# sort dataset with largest cell first to encounter any memory errors earlier | |
data_sorted = data_subset.sort("length",reverse=True) | |
return data_sorted | |
def get_possible_states(cell_states_to_model): | |
possible_states = [] | |
for key in ["start_state","goal_state"]: | |
possible_states += [cell_states_to_model[key]] | |
possible_states += cell_states_to_model.get("alt_states",[]) | |
return possible_states | |
def forward_pass_single_cell(model, example_cell, layer_to_quant): | |
example_cell.set_format(type="torch") | |
input_data = example_cell["input_ids"] | |
with torch.no_grad(): | |
outputs = model( | |
input_ids = input_data.to("cuda") | |
) | |
emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) | |
del outputs | |
return emb | |
def perturb_emb_by_index(emb, indices): | |
mask = torch.ones(emb.numel(), dtype=torch.bool) | |
mask[indices] = False | |
return emb[mask] | |
def delete_indices(example): | |
indices = example["perturb_index"] | |
if any(isinstance(el, list) for el in indices): | |
indices = flatten_list(indices) | |
for index in sorted(indices, reverse=True): | |
del example["input_ids"][index] | |
return example | |
# for genes_to_perturb = "all" where only genes within cell are overexpressed | |
def overexpress_indices(example): | |
indices = example["perturb_index"] | |
if any(isinstance(el, list) for el in indices): | |
indices = flatten_list(indices) | |
for index in sorted(indices, reverse=True): | |
example["input_ids"].insert(0, example["input_ids"].pop(index)) | |
return example | |
# for genes_to_perturb = list of genes to overexpress that are not necessarily expressed in cell | |
def overexpress_tokens(example): | |
# -100 indicates tokens to overexpress are not present in rank value encoding | |
if example["perturb_index"] != [-100]: | |
example = delete_indices(example) | |
[example["input_ids"].insert(0, token) for token in example["tokens_to_perturb"][::-1]] | |
return example | |
def remove_indices_from_emb(emb, indices_to_remove, gene_dim): | |
# indices_to_remove is list of indices to remove | |
indices_to_keep = [i for i in range(emb.size()[gene_dim]) if i not in indices_to_remove] | |
num_dims = emb.dim() | |
emb_slice = [slice(None) if dim != gene_dim else indices_to_keep for dim in range(num_dims)] | |
sliced_emb = emb[emb_slice] | |
return sliced_emb | |
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim): | |
output_batch = torch.stack([ | |
remove_indices_from_emb(emb_batch[i, :, :], idx, gene_dim-1) for | |
i, idx in enumerate(list_of_indices_to_remove) | |
]) | |
return output_batch | |
def make_perturbation_batch(example_cell, | |
perturb_type, | |
tokens_to_perturb, | |
anchor_token, | |
combo_lvl, | |
num_proc): | |
if tokens_to_perturb == "all": | |
if perturb_type in ["overexpress","activate"]: | |
range_start = 1 | |
elif perturb_type in ["delete","inhibit"]: | |
range_start = 0 | |
indices_to_perturb = [[i] for i in range(range_start,example_cell["length"][0])] | |
elif combo_lvl>0 and (anchor_token is not None): | |
example_input_ids = example_cell["input_ids "][0] | |
anchor_index = example_input_ids.index(anchor_token[0]) | |
indices_to_perturb = [sorted([anchor_index,i]) if i!=anchor_index else None for i in range(example_cell["length"][0])] | |
indices_to_perturb = [item for item in indices_to_perturb if item is not None] | |
else: | |
example_input_ids = example_cell["input_ids"][0] | |
indices_to_perturb = [[example_input_ids.index(token)] if token in example_input_ids else None for token in tokens_to_perturb] | |
indices_to_perturb = [item for item in indices_to_perturb if item is not None] | |
# create all permutations of combo_lvl of modifiers from tokens_to_perturb | |
if combo_lvl>0 and (anchor_token is None): | |
if tokens_to_perturb != "all": | |
if len(tokens_to_perturb) == combo_lvl+1: | |
indices_to_perturb = [list(x) for x in it.combinations(indices_to_perturb, combo_lvl+1)] | |
else: | |
all_indices = [[i] for i in range(example_cell["length"][0])] | |
all_indices = [index for index in all_indices if index not in indices_to_perturb] | |
indices_to_perturb = [[[j for i in indices_to_perturb for j in i], x] for x in all_indices] | |
length = len(indices_to_perturb) | |
perturbation_dataset = Dataset.from_dict({"input_ids": example_cell["input_ids"]*length, | |
"perturb_index": indices_to_perturb}) | |
if length<400: | |
num_proc_i = 1 | |
else: | |
num_proc_i = num_proc | |
if perturb_type == "delete": | |
perturbation_dataset = perturbation_dataset.map(delete_indices, num_proc=num_proc_i) | |
elif perturb_type == "overexpress": | |
perturbation_dataset = perturbation_dataset.map(overexpress_indices, num_proc=num_proc_i) | |
return perturbation_dataset, indices_to_perturb | |
# perturbed cell emb removing the activated/overexpressed/inhibited gene emb | |
# so that only non-perturbed gene embeddings are compared to each other | |
# in original or perturbed context | |
def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group): | |
all_embs_list = [] | |
# if making comparison batch for multiple perturbations in single cell | |
if perturb_group == False: | |
original_emb_list = [original_emb_batch]*len(indices_to_perturb) | |
# if making comparison batch for single perturbation in multiple cells | |
elif perturb_group == True: | |
original_emb_list = original_emb_batch | |
for i in range(len(original_emb_list)): | |
original_emb = original_emb_list[i] | |
indices = indices_to_perturb[i] | |
if indices == [-100]: | |
all_embs_list += [original_emb[:]] | |
continue | |
emb_list = [] | |
start = 0 | |
if any(isinstance(el, list) for el in indices): | |
indices = flatten_list(indices) | |
for i in sorted(indices): | |
emb_list += [original_emb[start:i]] | |
start = i+1 | |
emb_list += [original_emb[start:]] | |
all_embs_list += [torch.cat(emb_list)] | |
len_set = set([emb.size()[0] for emb in all_embs_list]) | |
if len(len_set) > 1: | |
max_len = max(len_set) | |
all_embs_list = [pad_2d_tensor(emb, None, max_len, 0) for emb in all_embs_list] | |
return torch.stack(all_embs_list) | |
# average embedding position of goal cell states | |
def get_cell_state_avg_embs(model, | |
filtered_input_data, | |
cell_states_to_model, | |
layer_to_quant, | |
pad_token_id, | |
forward_batch_size, | |
num_proc): | |
model_input_size = get_model_input_size(model) | |
possible_states = get_possible_states(cell_states_to_model) | |
state_embs_dict = dict() | |
for possible_state in possible_states: | |
state_embs_list = [] | |
original_lens = [] | |
def filter_states(example): | |
state_key = cell_states_to_model["state_key"] | |
return example[state_key] in [possible_state] | |
filtered_input_data_state = filtered_input_data.filter(filter_states, num_proc=num_proc) | |
total_batch_length = len(filtered_input_data_state) | |
if ((total_batch_length-1)/forward_batch_size).is_integer(): | |
forward_batch_size = forward_batch_size-1 | |
max_len = max(filtered_input_data_state["length"]) | |
for i in range(0, total_batch_length, forward_batch_size): | |
max_range = min(i+forward_batch_size, total_batch_length) | |
state_minibatch = filtered_input_data_state.select([i for i in range(i, max_range)]) | |
state_minibatch.set_format(type="torch") | |
input_data_minibatch = state_minibatch["input_ids"] | |
original_lens += state_minibatch["length"] | |
input_data_minibatch = pad_tensor_list(input_data_minibatch, | |
max_len, | |
pad_token_id, | |
model_input_size) | |
attention_mask = gen_attention_mask(state_minibatch, max_len) | |
with torch.no_grad(): | |
outputs = model( | |
input_ids = input_data_minibatch.to("cuda"), | |
attention_mask = attention_mask | |
) | |
state_embs_i = outputs.hidden_states[layer_to_quant] | |
state_embs_list += [state_embs_i] | |
del outputs | |
del state_minibatch | |
del input_data_minibatch | |
del attention_mask | |
del state_embs_i | |
torch.cuda.empty_cache() | |
state_embs = torch.cat(state_embs_list) | |
avg_state_emb = mean_nonpadding_embs(state_embs, torch.Tensor(original_lens).to("cuda")) | |
avg_state_emb = torch.mean(avg_state_emb, dim=0, keepdim=True) | |
state_embs_dict[possible_state] = avg_state_emb | |
return state_embs_dict | |
# quantify cosine similarity of perturbed vs original or alternate states | |
def quant_cos_sims(model, | |
perturb_type, | |
perturbation_batch, | |
forward_batch_size, | |
layer_to_quant, | |
original_emb, | |
tokens_to_perturb, | |
indices_to_perturb, | |
perturb_group, | |
cell_states_to_model, | |
state_embs_dict, | |
pad_token_id, | |
model_input_size, | |
nproc): | |
cos = torch.nn.CosineSimilarity(dim=2) | |
total_batch_length = len(perturbation_batch) | |
if ((total_batch_length-1)/forward_batch_size).is_integer(): | |
forward_batch_size = forward_batch_size-1 | |
if cell_states_to_model is None: | |
if perturb_group == False: # (if perturb_group is True, original_emb is filtered_input_data) | |
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb, perturb_group) | |
cos_sims = [] | |
else: | |
possible_states = get_possible_states(cell_states_to_model) | |
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for i in range(len(possible_states))])) | |
# measure length of each element in perturbation_batch | |
perturbation_batch = perturbation_batch.map( | |
measure_length, num_proc=nproc | |
) | |
for i in range(0, total_batch_length, forward_batch_size): | |
max_range = min(i+forward_batch_size, total_batch_length) | |
perturbation_minibatch = perturbation_batch.select([i for i in range(i, max_range)]) | |
# determine if need to pad or truncate batch | |
minibatch_length_set = set(perturbation_minibatch["length"]) | |
minibatch_lengths = perturbation_minibatch["length"] | |
if (len(minibatch_length_set) > 1) or (max(minibatch_length_set) > model_input_size): | |
needs_pad_or_trunc = True | |
else: | |
needs_pad_or_trunc = False | |
max_len = max(minibatch_length_set) | |
if needs_pad_or_trunc == True: | |
max_len = min(max(minibatch_length_set),model_input_size) | |
def pad_or_trunc_example(example): | |
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"], | |
pad_token_id, | |
max_len) | |
return example | |
perturbation_minibatch = perturbation_minibatch.map(pad_or_trunc_example, num_proc=nproc) | |
perturbation_minibatch.set_format(type="torch") | |
input_data_minibatch = perturbation_minibatch["input_ids"] | |
attention_mask = gen_attention_mask(perturbation_minibatch, max_len) | |
# extract embeddings for perturbation minibatch | |
with torch.no_grad(): | |
outputs = model( | |
input_ids = input_data_minibatch.to("cuda"), | |
attention_mask = attention_mask | |
) | |
del input_data_minibatch | |
del perturbation_minibatch | |
del attention_mask | |
if len(indices_to_perturb)>1: | |
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) | |
else: | |
minibatch_emb = outputs.hidden_states[layer_to_quant] | |
if perturb_type == "overexpress": | |
# remove overexpressed genes to quantify effect on remaining genes | |
if perturb_group == False: | |
overexpressed_to_remove = 1 | |
if perturb_group == True: | |
overexpressed_to_remove = len(tokens_to_perturb) | |
minibatch_emb = minibatch_emb[:,overexpressed_to_remove:,:] | |
# if quantifying single perturbation in multiple different cells, pad original batch and extract embs | |
if perturb_group == True: | |
# pad minibatch of original batch to extract embeddings | |
# truncate to the (model input size - # tokens to overexpress) to ensure comparability | |
# since max input size of perturb batch will be reduced by # tokens to overexpress | |
original_minibatch = original_emb.select([i for i in range(i, max_range)]) | |
original_minibatch_lengths = original_minibatch["length"] | |
original_minibatch_length_set = set(original_minibatch["length"]) | |
if perturb_type == "overexpress": | |
new_max_len = model_input_size - len(tokens_to_perturb) | |
else: | |
new_max_len = model_input_size | |
if (len(original_minibatch_length_set) > 1) or (max(original_minibatch_length_set) > new_max_len): | |
original_max_len = min(max(original_minibatch_length_set),new_max_len) | |
def pad_or_trunc_example(example): | |
example["input_ids"] = pad_or_truncate_encoding(example["input_ids"], pad_token_id, original_max_len) | |
return example | |
original_minibatch = original_minibatch.map(pad_or_trunc_example, num_proc=nproc) | |
original_minibatch.set_format(type="torch") | |
original_input_data_minibatch = original_minibatch["input_ids"] | |
attention_mask = gen_attention_mask(original_minibatch, original_max_len) | |
# extract embeddings for original minibatch | |
with torch.no_grad(): | |
original_outputs = model( | |
input_ids = original_input_data_minibatch.to("cuda"), | |
attention_mask = attention_mask | |
) | |
del original_input_data_minibatch | |
del original_minibatch | |
del attention_mask | |
if len(indices_to_perturb)>1: | |
original_minibatch_emb = torch.squeeze(original_outputs.hidden_states[layer_to_quant]) | |
else: | |
original_minibatch_emb = original_outputs.hidden_states[layer_to_quant] | |
# embedding dimension of the genes | |
gene_dim = 1 | |
# exclude overexpression due to case when genes are not expressed but being overexpressed | |
if perturb_type != "overexpress": | |
original_minibatch_emb = remove_indices_from_emb_batch(original_minibatch_emb, | |
indices_to_perturb, | |
gene_dim) | |
# cosine similarity between original emb and batch items | |
if cell_states_to_model is None: | |
if perturb_group == False: | |
minibatch_comparison = comparison_batch[i:max_range] | |
elif perturb_group == True: | |
minibatch_comparison = make_comparison_batch(original_minibatch_emb, | |
indices_to_perturb, | |
perturb_group) | |
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")] | |
elif cell_states_to_model is not None: | |
for state in possible_states: | |
if perturb_group == False: | |
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_emb, | |
minibatch_emb, | |
state_embs_dict[state], | |
perturb_group) | |
elif perturb_group == True: | |
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_minibatch_emb, | |
minibatch_emb, | |
state_embs_dict[state], | |
perturb_group, | |
torch.tensor(original_minibatch_lengths, device="cuda"), | |
torch.tensor(minibatch_lengths, device="cuda")) | |
del outputs | |
del minibatch_emb | |
if cell_states_to_model is None: | |
del minibatch_comparison | |
torch.cuda.empty_cache() | |
if cell_states_to_model is None: | |
cos_sims_stack = torch.cat(cos_sims) | |
return cos_sims_stack | |
else: | |
for state in possible_states: | |
cos_sims_vs_alt_dict[state] = torch.cat(cos_sims_vs_alt_dict[state]) | |
return cos_sims_vs_alt_dict | |
# calculate cos sim shift of perturbation with respect to origin and alternative cell | |
def cos_sim_shift(original_emb, | |
minibatch_emb, | |
end_emb, | |
perturb_group, | |
original_minibatch_lengths = None, | |
minibatch_lengths = None): | |
cos = torch.nn.CosineSimilarity(dim=2) | |
if not perturb_group: | |
original_emb = torch.mean(original_emb,dim=0,keepdim=True) | |
original_emb = original_emb[None, :] | |
origin_v_end = torch.squeeze(cos(original_emb, end_emb)) #test | |
else: | |
if original_emb.size() != minibatch_emb.size(): | |
logger.error( | |
f"Embeddings are not the same dimensions. " \ | |
f"original_emb is {original_emb.size()}. " \ | |
f"minibatch_emb is {minibatch_emb.size()}. " | |
) | |
raise | |
if original_minibatch_lengths is not None: | |
original_emb = mean_nonpadding_embs(original_emb, original_minibatch_lengths) | |
# else: | |
# original_emb = torch.mean(original_emb,dim=1,keepdim=True) | |
end_emb = torch.unsqueeze(end_emb, 1) | |
origin_v_end = cos(original_emb, end_emb) | |
origin_v_end = torch.squeeze(origin_v_end) | |
if minibatch_lengths is not None: | |
perturb_emb = mean_nonpadding_embs(minibatch_emb, minibatch_lengths) | |
else: | |
perturb_emb = torch.mean(minibatch_emb,dim=1,keepdim=True) | |
perturb_v_end = cos(perturb_emb, end_emb) | |
perturb_v_end = torch.squeeze(perturb_v_end) | |
return [(perturb_v_end-origin_v_end).to("cpu")] | |
def pad_list(input_ids, pad_token_id, max_len): | |
input_ids = np.pad(input_ids, | |
(0, max_len-len(input_ids)), | |
mode='constant', constant_values=pad_token_id) | |
return input_ids | |
def pad_tensor(tensor, pad_token_id, max_len): | |
tensor = torch.nn.functional.pad(tensor, pad=(0, | |
max_len - tensor.numel()), | |
mode='constant', | |
value=pad_token_id) | |
return tensor | |
def pad_2d_tensor(tensor, pad_token_id, max_len, dim): | |
if dim == 0: | |
pad = (0, 0, 0, max_len - tensor.size()[dim]) | |
elif dim == 1: | |
pad = (0, max_len - tensor.size()[dim], 0, 0) | |
tensor = torch.nn.functional.pad(tensor, pad=pad, | |
mode='constant', | |
value=pad_token_id) | |
return tensor | |
def pad_or_truncate_encoding(encoding, pad_token_id, max_len): | |
if isinstance(encoding, torch.Tensor): | |
encoding_len = tensor.size()[0] | |
elif isinstance(encoding, list): | |
encoding_len = len(encoding) | |
if encoding_len > max_len: | |
encoding = encoding[0:max_len] | |
elif encoding_len < max_len: | |
if isinstance(encoding, torch.Tensor): | |
encoding = pad_tensor(encoding, pad_token_id, max_len) | |
elif isinstance(encoding, list): | |
encoding = pad_list(encoding, pad_token_id, max_len) | |
return encoding | |
# pad list of tensors and convert to tensor | |
def pad_tensor_list(tensor_list, dynamic_or_constant, pad_token_id, model_input_size): | |
# Determine maximum tensor length | |
if dynamic_or_constant == "dynamic": | |
max_len = max([tensor.squeeze().numel() for tensor in tensor_list]) | |
elif type(dynamic_or_constant) == int: | |
max_len = dynamic_or_constant | |
else: | |
max_len = model_input_size | |
logger.warning( | |
"If padding style is constant, must provide integer value. " \ | |
f"Setting padding to max input size {model_input_size}.") | |
# pad all tensors to maximum length | |
tensor_list = [pad_tensor(tensor, pad_token_id, max_len) for tensor in tensor_list] | |
# return stacked tensors | |
return torch.stack(tensor_list) | |
def gen_attention_mask(minibatch_encoding, max_len = None): | |
if max_len == None: | |
max_len = max(minibatch_encoding["length"]) | |
original_lens = minibatch_encoding["length"] | |
attention_mask = [[1]*original_len | |
+[0]*(max_len - original_len) | |
for original_len in original_lens] | |
return torch.tensor(attention_mask).to("cuda") | |
# get cell embeddings excluding padding | |
def mean_nonpadding_embs(embs, original_lens): | |
# mask based on padding lengths | |
mask = torch.arange(embs.size(1)).unsqueeze(0).to("cuda") < original_lens.unsqueeze(1) | |
# extend mask dimensions to match the embeddings tensor | |
mask = mask.unsqueeze(2).expand_as(embs) | |
# use the mask to zero out the embeddings in padded areas | |
masked_embs = embs * mask.float() | |
# sum and divide by the lengths to get the mean of non-padding embs | |
mean_embs = masked_embs.sum(1) / original_lens.view(-1, 1).float() | |
return mean_embs | |
class InSilicoPerturber: | |
valid_option_dict = { | |
"perturb_type": {"delete","overexpress","inhibit","activate"}, | |
"perturb_rank_shift": {None, 1, 2, 3}, | |
"genes_to_perturb": {"all", list}, | |
"combos": {0, 1}, | |
"anchor_gene": {None, str}, | |
"model_type": {"Pretrained","GeneClassifier","CellClassifier"}, | |
"num_classes": {int}, | |
"emb_mode": {"cell","cell_and_gene"}, | |
"cell_emb_style": {"mean_pool"}, | |
"filter_data": {None, dict}, | |
"cell_states_to_model": {None, dict}, | |
"max_ncells": {None, int}, | |
"emb_layer": {-1, 0}, | |
"forward_batch_size": {int}, | |
"nproc": {int}, | |
} | |
def __init__( | |
self, | |
perturb_type="delete", | |
perturb_rank_shift=None, | |
genes_to_perturb="all", | |
combos=0, | |
anchor_gene=None, | |
model_type="Pretrained", | |
num_classes=0, | |
emb_mode="cell", | |
cell_emb_style="mean_pool", | |
filter_data=None, | |
cell_states_to_model=None, | |
max_ncells=None, | |
emb_layer=-1, | |
forward_batch_size=100, | |
nproc=4, | |
token_dictionary_file=TOKEN_DICTIONARY_FILE, | |
): | |
""" | |
Initialize in silico perturber. | |
Parameters | |
---------- | |
perturb_type : {"delete","overexpress","inhibit","activate"} | |
Type of perturbation. | |
"delete": delete gene from rank value encoding | |
"overexpress": move gene to front of rank value encoding | |
"inhibit": move gene to lower quartile of rank value encoding | |
"activate": move gene to higher quartile of rank value encoding | |
perturb_rank_shift : None, {1,2,3} | |
Number of quartiles by which to shift rank of gene. | |
For example, if perturb_type="activate" and perturb_rank_shift=1: | |
genes in 4th quartile will move to middle of 3rd quartile. | |
genes in 3rd quartile will move to middle of 2nd quartile. | |
genes in 2nd quartile will move to middle of 1st quartile. | |
genes in 1st quartile will move to front of rank value encoding. | |
For example, if perturb_type="inhibit" and perturb_rank_shift=2: | |
genes in 1st quartile will move to middle of 3rd quartile. | |
genes in 2nd quartile will move to middle of 4th quartile. | |
genes in 3rd or 4th quartile will move to bottom of rank value encoding. | |
genes_to_perturb : "all", list | |
Default is perturbing each gene detected in each cell in the dataset. | |
Otherwise, may provide a list of ENSEMBL IDs of genes to perturb. | |
If gene list is provided, then perturber will only test perturbing them all together | |
(rather than testing each possible combination of the provided genes). | |
combos : {0,1} | |
Whether to perturb genes individually (0) or in pairs (1). | |
anchor_gene : None, str | |
ENSEMBL ID of gene to use as anchor in combination perturbations. | |
For example, if combos=1 and anchor_gene="ENSG00000148400": | |
anchor gene will be perturbed in combination with each other gene. | |
model_type : {"Pretrained","GeneClassifier","CellClassifier"} | |
Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier. | |
num_classes : int | |
If model is a gene or cell classifier, specify number of classes it was trained to classify. | |
For the pretrained Geneformer model, number of classes is 0 as it is not a classifier. | |
emb_mode : {"cell","cell_and_gene"} | |
Whether to output impact of perturbation on cell and/or gene embeddings. | |
cell_emb_style : "mean_pool" | |
Method for summarizing cell embeddings. | |
Currently only option is mean pooling of gene embeddings for given cell. | |
filter_data : None, dict | |
Default is to use all input data for in silico perturbation study. | |
Otherwise, dictionary specifying .dataset column name and list of values to filter by. | |
cell_states_to_model: None, dict | |
Cell states to model if testing perturbations that achieve goal state change. | |
Four-item dictionary with keys: state_key, start_state, goal_state, and alt_states | |
state_key: key specifying name of column in .dataset that defines the start/goal states | |
start_state: value in the state_key column that specifies the start state | |
goal_state: value in the state_key column taht specifies the goal end state | |
alt_states: list of values in the state_key column that specify the alternate end states | |
For example: {"state_key": "disease", | |
"start_state": "dcm", | |
"goal_state": "nf", | |
"alt_states": ["hcm", "other1", "other2"]} | |
max_ncells : None, int | |
Maximum number of cells to test. | |
If None, will test all cells. | |
emb_layer : {-1, 0} | |
Embedding layer to use for quantification. | |
-1: 2nd to last layer (recommended for pretrained Geneformer) | |
0: last layer (recommended for cell classifier fine-tuned for disease state) | |
forward_batch_size : int | |
Batch size for forward pass. | |
nproc : int | |
Number of CPU processes to use. | |
token_dictionary_file : Path | |
Path to pickle file containing token dictionary (Ensembl ID:token). | |
""" | |
self.perturb_type = perturb_type | |
self.perturb_rank_shift = perturb_rank_shift | |
self.genes_to_perturb = genes_to_perturb | |
self.combos = combos | |
self.anchor_gene = anchor_gene | |
if self.genes_to_perturb == "all": | |
self.perturb_group = False | |
else: | |
self.perturb_group = True | |
if (self.anchor_gene != None) or (self.combos != 0): | |
self.anchor_gene = None | |
self.combos = 0 | |
logger.warning( | |
"anchor_gene set to None and combos set to 0. " \ | |
"If providing list of genes to perturb, " \ | |
"list of genes_to_perturb will be perturbed together, "\ | |
"without anchor gene or combinations.") | |
self.model_type = model_type | |
self.num_classes = num_classes | |
self.emb_mode = emb_mode | |
self.cell_emb_style = cell_emb_style | |
self.filter_data = filter_data | |
self.cell_states_to_model = cell_states_to_model | |
self.max_ncells = max_ncells | |
self.emb_layer = emb_layer | |
self.forward_batch_size = forward_batch_size | |
self.nproc = nproc | |
self.validate_options() | |
# load token dictionary (Ensembl IDs:token) | |
with open(token_dictionary_file, "rb") as f: | |
self.gene_token_dict = pickle.load(f) | |
self.pad_token_id = self.gene_token_dict.get("<pad>") | |
if self.anchor_gene is None: | |
self.anchor_token = None | |
else: | |
try: | |
self.anchor_token = [self.gene_token_dict[self.anchor_gene]] | |
except KeyError: | |
logger.error( | |
f"Anchor gene {self.anchor_gene} not in token dictionary." | |
) | |
raise | |
if self.genes_to_perturb == "all": | |
self.tokens_to_perturb = "all" | |
else: | |
missing_genes = [gene for gene in self.genes_to_perturb if gene not in self.gene_token_dict.keys()] | |
if len(missing_genes) == len(self.genes_to_perturb): | |
logger.error( | |
"None of the provided genes to perturb are in token dictionary." | |
) | |
raise | |
elif len(missing_genes)>0: | |
logger.warning( | |
f"Genes to perturb {missing_genes} are not in token dictionary.") | |
self.tokens_to_perturb = [self.gene_token_dict.get(gene) for gene in self.genes_to_perturb] | |
def validate_options(self): | |
# first disallow options under development | |
if self.perturb_type in ["inhibit", "activate"]: | |
logger.error( | |
"In silico inhibition and activation currently under development. " \ | |
"Current valid options for 'perturb_type': 'delete' or 'overexpress'" | |
) | |
raise | |
# confirm arguments are within valid options and compatible with each other | |
for attr_name,valid_options in self.valid_option_dict.items(): | |
attr_value = self.__dict__[attr_name] | |
if type(attr_value) not in {list, dict}: | |
if attr_value in valid_options: | |
continue | |
if attr_name in ["anchor_gene"]: | |
if type(attr_name) in {str}: | |
continue | |
valid_type = False | |
for option in valid_options: | |
if (option in [int,list,dict]) and isinstance(attr_value, option): | |
valid_type = True | |
break | |
if valid_type: | |
continue | |
logger.error( | |
f"Invalid option for {attr_name}. " \ | |
f"Valid options for {attr_name}: {valid_options}" | |
) | |
raise | |
if self.perturb_type in ["delete","overexpress"]: | |
if self.perturb_rank_shift is not None: | |
if self.perturb_type == "delete": | |
logger.warning( | |
"perturb_rank_shift set to None. " \ | |
"If perturb type is delete then gene is deleted entirely " \ | |
"rather than shifted by quartile") | |
elif self.perturb_type == "overexpress": | |
logger.warning( | |
"perturb_rank_shift set to None. " \ | |
"If perturb type is overexpress then gene is moved to front " \ | |
"of rank value encoding rather than shifted by quartile") | |
self.perturb_rank_shift = None | |
if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"): | |
self.emb_mode = "cell" | |
logger.warning( | |
"emb_mode set to 'cell'. " \ | |
"Currently, analysis with anchor gene " \ | |
"only outputs effect on cell embeddings.") | |
if self.cell_states_to_model is not None: | |
if len(self.cell_states_to_model.items()) == 1: | |
logger.warning( | |
"The single value dictionary for cell_states_to_model will be " \ | |
"replaced with a dictionary with named keys for start, goal, and alternate states. " \ | |
"Please specify state_key, start_state, goal_state, and alt_states " \ | |
"in the cell_states_to_model dictionary for future use. " \ | |
"For example, cell_states_to_model={" \ | |
"'state_key': 'disease', " \ | |
"'start_state': 'dcm', " \ | |
"'goal_state': 'nf', " \ | |
"'alt_states': ['hcm', 'other1', 'other2']}" | |
) | |
for key,value in self.cell_states_to_model.items(): | |
if (len(value) == 3) and isinstance(value, tuple): | |
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list): | |
if len(value[0]) == 1 and len(value[1]) == 1: | |
all_values = value[0]+value[1]+value[2] | |
if len(all_values) == len(set(all_values)): | |
continue | |
# reformat to the new named key format | |
state_values = flatten_list(list(self.cell_states_to_model.values())) | |
self.cell_states_to_model = { | |
"state_key": list(self.cell_states_to_model.keys())[0], | |
"start_state": state_values[0][0], | |
"goal_state": state_values[1][0], | |
"alt_states": state_values[2:][0] | |
} | |
elif set(self.cell_states_to_model.keys()) == {"state_key", "start_state", "goal_state", "alt_states"}: | |
if (self.cell_states_to_model["state_key"] is None) \ | |
or (self.cell_states_to_model["start_state"] is None) \ | |
or (self.cell_states_to_model["goal_state"] is None): | |
logger.error( | |
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model.") | |
raise | |
if self.cell_states_to_model["start_state"] == self.cell_states_to_model["goal_state"]: | |
logger.error( | |
"All states must be unique.") | |
raise | |
if self.cell_states_to_model["alt_states"] is not None: | |
if type(self.cell_states_to_model["alt_states"]) is not list: | |
logger.error( | |
"self.cell_states_to_model['alt_states'] must be a list (even if it is one element)." | |
) | |
raise | |
if len(self.cell_states_to_model["alt_states"])!= len(set(self.cell_states_to_model["alt_states"])): | |
logger.error( | |
"All states must be unique.") | |
raise | |
else: | |
logger.error( | |
"cell_states_to_model must only have the following four keys: " \ | |
"'state_key', 'start_state', 'goal_state', 'alt_states'." \ | |
"For example, cell_states_to_model={" \ | |
"'state_key': 'disease', " \ | |
"'start_state': 'dcm', " \ | |
"'goal_state': 'nf', " \ | |
"'alt_states': ['hcm', 'other1', 'other2']}" | |
) | |
raise | |
if self.anchor_gene is not None: | |
self.anchor_gene = None | |
logger.warning( | |
"anchor_gene set to None. " \ | |
"Currently, anchor gene not available " \ | |
"when modeling multiple cell states.") | |
if self.perturb_type in ["inhibit","activate"]: | |
if self.perturb_rank_shift is None: | |
logger.error( | |
"If perturb type is inhibit or activate then " \ | |
"quartile to shift by must be specified.") | |
raise | |
if self.filter_data is not None: | |
for key,value in self.filter_data.items(): | |
if type(value) != list: | |
self.filter_data[key] = [value] | |
logger.warning( | |
"Values in filter_data dict must be lists. " \ | |
f"Changing {key} value to list ([{value}]).") | |
def perturb_data(self, | |
model_directory, | |
input_data_file, | |
output_directory, | |
output_prefix): | |
""" | |
Perturb genes in input data and save as results in output_directory. | |
Parameters | |
---------- | |
model_directory : Path | |
Path to directory containing model | |
input_data_file : Path | |
Path to directory containing .dataset inputs | |
output_directory : Path | |
Path to directory where perturbation data will be saved as batched pickle files | |
output_prefix : str | |
Prefix for output files | |
""" | |
filtered_input_data = load_and_filter(self.filter_data, self.nproc, input_data_file) | |
model = load_model(self.model_type, self.num_classes, model_directory) | |
layer_to_quant = quant_layers(model)+self.emb_layer | |
if self.cell_states_to_model is None: | |
state_embs_dict = None | |
else: | |
# confirm that all states are valid to prevent futile filtering | |
state_name = self.cell_states_to_model["state_key"] | |
state_values = filtered_input_data[state_name] | |
for value in get_possible_states(self.cell_states_to_model): | |
if value not in state_values: | |
logger.error( | |
f"{value} is not present in the dataset's {state_name} attribute.") | |
raise | |
# get dictionary of average cell state embeddings for comparison | |
downsampled_data = downsample_and_sort(filtered_input_data, self.max_ncells) | |
state_embs_dict = get_cell_state_avg_embs(model, | |
downsampled_data, | |
self.cell_states_to_model, | |
layer_to_quant, | |
self.pad_token_id, | |
self.forward_batch_size, | |
self.nproc) | |
# filter for start state cells | |
start_state = self.cell_states_to_model["start_state"] | |
def filter_for_origin(example): | |
return example[state_name] in [start_state] | |
filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=self.nproc) | |
self.in_silico_perturb(model, | |
filtered_input_data, | |
layer_to_quant, | |
state_embs_dict, | |
output_directory, | |
output_prefix) | |
# determine effect of perturbation on other genes | |
def in_silico_perturb(self, | |
model, | |
filtered_input_data, | |
layer_to_quant, | |
state_embs_dict, | |
output_directory, | |
output_prefix): | |
output_path_prefix = f"{output_directory}in_silico_{self.perturb_type}_{output_prefix}_dict_1Kbatch" | |
model_input_size = get_model_input_size(model) | |
# filter dataset for cells that have tokens to be perturbed | |
if self.anchor_token is not None: | |
def if_has_tokens_to_perturb(example): | |
return (len(set(example["input_ids"]).intersection(self.anchor_token))==len(self.anchor_token)) | |
filtered_input_data = filtered_input_data.filter(if_has_tokens_to_perturb, num_proc=self.nproc) | |
if len(filtered_input_data) == 0: | |
logger.error( | |
"No cells in dataset contain anchor gene.") | |
raise | |
else: | |
logger.info(f"# cells with anchor gene: {len(filtered_input_data)}") | |
if (self.tokens_to_perturb != "all") and (self.perturb_type != "overexpress"): | |
# minimum # genes needed for perturbation test | |
min_genes = len(self.tokens_to_perturb) | |
def if_has_tokens_to_perturb(example): | |
return (len(set(example["input_ids"]).intersection(self.tokens_to_perturb))>=min_genes) | |
filtered_input_data = filtered_input_data.filter(if_has_tokens_to_perturb, num_proc=self.nproc) | |
if len(filtered_input_data) == 0: | |
logger.error( | |
"No cells in dataset contain all genes to perturb as a group.") | |
raise | |
cos_sims_dict = defaultdict(list) | |
pickle_batch = -1 | |
filtered_input_data = downsample_and_sort(filtered_input_data, self.max_ncells) | |
# make perturbation batch w/ single perturbation in multiple cells | |
if self.perturb_group == True: | |
def make_group_perturbation_batch(example): | |
example_input_ids = example["input_ids"] | |
example["tokens_to_perturb"] = self.tokens_to_perturb | |
indices_to_perturb = [example_input_ids.index(token) if token in example_input_ids else None for token in self.tokens_to_perturb] | |
indices_to_perturb = [item for item in indices_to_perturb if item is not None] | |
if len(indices_to_perturb) > 0: | |
example["perturb_index"] = indices_to_perturb | |
else: | |
# -100 indicates tokens to overexpress are not present in rank value encoding | |
example["perturb_index"] = [-100] | |
if self.perturb_type == "delete": | |
example = delete_indices(example) | |
elif self.perturb_type == "overexpress": | |
example = overexpress_tokens(example) | |
return example | |
perturbation_batch = filtered_input_data.map(make_group_perturbation_batch, num_proc=self.nproc) | |
indices_to_perturb = perturbation_batch["perturb_index"] | |
cos_sims_data = quant_cos_sims(model, | |
self.perturb_type, | |
perturbation_batch, | |
self.forward_batch_size, | |
layer_to_quant, | |
filtered_input_data, | |
self.tokens_to_perturb, | |
indices_to_perturb, | |
self.perturb_group, | |
self.cell_states_to_model, | |
state_embs_dict, | |
self.pad_token_id, | |
model_input_size, | |
self.nproc) | |
perturbed_genes = tuple(self.tokens_to_perturb) | |
original_lengths = filtered_input_data["length"] | |
if self.cell_states_to_model is None: | |
# update cos sims dict | |
# key is tuple of (perturbed_gene, affected_gene) | |
# or (perturbed_genes, "cell_emb") for avg cell emb change | |
cos_sims_data = cos_sims_data.to("cuda") | |
max_padded_len = cos_sims_data.shape[1] | |
for j in range(cos_sims_data.shape[0]): | |
# remove padding before mean pooling cell embedding | |
original_length = original_lengths[j] | |
gene_list = filtered_input_data[j]["input_ids"] | |
indices_removed = indices_to_perturb[j] | |
padding_to_remove = max_padded_len - (original_length \ | |
- len(self.tokens_to_perturb) \ | |
- len(indices_removed)) | |
nonpadding_cos_sims_data = cos_sims_data[j][:-padding_to_remove] | |
cell_cos_sim = torch.mean(nonpadding_cos_sims_data).item() | |
cos_sims_dict[(perturbed_genes, "cell_emb")] += [cell_cos_sim] | |
if self.emb_mode == "cell_and_gene": | |
for k in range(cos_sims_data.shape[1]): | |
cos_sim_value = nonpadding_cos_sims_data[k] | |
affected_gene = gene_list[k].item() | |
cos_sims_dict[(perturbed_genes, affected_gene)] += [cos_sim_value.item()] | |
else: | |
# update cos sims dict | |
# key is tuple of (perturbed_genes, "cell_emb") | |
# value is list of tuples of cos sims for cell_states_to_model | |
origin_state_key = self.cell_states_to_model["start_state"] | |
cos_sims_origin = cos_sims_data[origin_state_key] | |
for j in range(cos_sims_origin.shape[0]): | |
data_list = [] | |
for data in list(cos_sims_data.values()): | |
data_item = data.to("cuda") | |
data_list += [data_item[j].item()] | |
cos_sims_dict[(perturbed_genes, "cell_emb")] += [tuple(data_list)] | |
with open(f"{output_path_prefix}_raw.pickle", "wb") as fp: | |
pickle.dump(cos_sims_dict, fp) | |
# make perturbation batch w/ multiple perturbations in single cell | |
if self.perturb_group == False: | |
for i in trange(len(filtered_input_data)): | |
example_cell = filtered_input_data.select([i]) | |
original_emb = forward_pass_single_cell(model, example_cell, layer_to_quant) | |
gene_list = torch.squeeze(example_cell["input_ids"]) | |
# reset to original type to prevent downstream issues due to forward_pass_single_cell modifying as torch format in place | |
example_cell = filtered_input_data.select([i]) | |
if self.anchor_token is None: | |
for combo_lvl in range(self.combos+1): | |
perturbation_batch, indices_to_perturb = make_perturbation_batch(example_cell, | |
self.perturb_type, | |
self.tokens_to_perturb, | |
self.anchor_token, | |
combo_lvl, | |
self.nproc) | |
cos_sims_data = quant_cos_sims(model, | |
self.perturb_type, | |
perturbation_batch, | |
self.forward_batch_size, | |
layer_to_quant, | |
original_emb, | |
self.tokens_to_perturb, | |
indices_to_perturb, | |
self.perturb_group, | |
self.cell_states_to_model, | |
state_embs_dict, | |
self.pad_token_id, | |
model_input_size, | |
self.nproc) | |
if self.cell_states_to_model is None: | |
# update cos sims dict | |
# key is tuple of (perturbed_gene, affected_gene) | |
# or (perturbed_gene, "cell_emb") for avg cell emb change | |
cos_sims_data = cos_sims_data.to("cuda") | |
for j in range(cos_sims_data.shape[0]): | |
if self.tokens_to_perturb != "all": | |
j_index = torch.tensor(indices_to_perturb[j]) | |
if j_index.shape[0]>1: | |
j_index = torch.squeeze(j_index) | |
else: | |
j_index = torch.tensor([j]) | |
perturbed_gene = torch.index_select(gene_list, 0, j_index) | |
if perturbed_gene.shape[0]==1: | |
perturbed_gene = perturbed_gene.item() | |
elif perturbed_gene.shape[0]>1: | |
perturbed_gene = tuple(perturbed_gene.tolist()) | |
cell_cos_sim = torch.mean(cos_sims_data[j]).item() | |
cos_sims_dict[(perturbed_gene, "cell_emb")] += [cell_cos_sim] | |
# not_j_index = list(set(i for i in range(gene_list.shape[0])).difference(j_index)) | |
# gene_list_j = torch.index_select(gene_list, 0, j_index) | |
if self.emb_mode == "cell_and_gene": | |
for k in range(cos_sims_data.shape[1]): | |
cos_sim_value = cos_sims_data[j][k] | |
affected_gene = gene_list[k].item() | |
cos_sims_dict[(perturbed_gene, affected_gene)] += [cos_sim_value.item()] | |
else: | |
# update cos sims dict | |
# key is tuple of (perturbed_gene, "cell_emb") | |
# value is list of tuples of cos sims for cell_states_to_model | |
origin_state_key = self.cell_states_to_model["start_state"] | |
cos_sims_origin = cos_sims_data[origin_state_key] | |
for j in range(cos_sims_origin.shape[0]): | |
if (self.tokens_to_perturb != "all") or (combo_lvl>0): | |
j_index = torch.tensor(indices_to_perturb[j]) | |
if j_index.shape[0]>1: | |
j_index = torch.squeeze(j_index) | |
else: | |
j_index = torch.tensor([j]) | |
perturbed_gene = torch.index_select(gene_list, 0, j_index) | |
if perturbed_gene.shape[0]==1: | |
perturbed_gene = perturbed_gene.item() | |
elif perturbed_gene.shape[0]>1: | |
perturbed_gene = tuple(perturbed_gene.tolist()) | |
data_list = [] | |
for data in list(cos_sims_data.values()): | |
data_item = data.to("cuda") | |
cell_data = torch.mean(data_item[j]).item() | |
data_list += [cell_data] | |
cos_sims_dict[(perturbed_gene, "cell_emb")] += [tuple(data_list)] | |
elif self.anchor_token is not None: | |
perturbation_batch, indices_to_perturb = make_perturbation_batch(example_cell, | |
self.perturb_type, | |
self.tokens_to_perturb, | |
None, # first run without anchor token to test individual gene perturbations | |
0, | |
self.nproc) | |
cos_sims_data = quant_cos_sims(model, | |
self.perturb_type, | |
perturbation_batch, | |
self.forward_batch_size, | |
layer_to_quant, | |
original_emb, | |
self.tokens_to_perturb, | |
indices_to_perturb, | |
self.perturb_group, | |
self.cell_states_to_model, | |
state_embs_dict, | |
self.pad_token_id, | |
model_input_size, | |
self.nproc) | |
cos_sims_data = cos_sims_data.to("cuda") | |
combo_perturbation_batch, combo_indices_to_perturb = make_perturbation_batch(example_cell, | |
self.perturb_type, | |
self.tokens_to_perturb, | |
self.anchor_token, | |
1, | |
self.nproc) | |
combo_cos_sims_data = quant_cos_sims(model, | |
self.perturb_type, | |
combo_perturbation_batch, | |
self.forward_batch_size, | |
layer_to_quant, | |
original_emb, | |
self.tokens_to_perturb, | |
combo_indices_to_perturb, | |
self.perturb_group, | |
self.cell_states_to_model, | |
state_embs_dict, | |
self.pad_token_id, | |
model_input_size, | |
self.nproc) | |
combo_cos_sims_data = combo_cos_sims_data.to("cuda") | |
# update cos sims dict | |
# key is tuple of (perturbed_gene, "cell_emb") for avg cell emb change | |
anchor_index = example_cell["input_ids"][0].index(self.anchor_token[0]) | |
anchor_cell_cos_sim = torch.mean(cos_sims_data[anchor_index]).item() | |
non_anchor_indices = [k for k in range(cos_sims_data.shape[0]) if k != anchor_index] | |
cos_sims_data = cos_sims_data[non_anchor_indices,:] | |
for j in range(cos_sims_data.shape[0]): | |
if j<anchor_index: | |
j_index = torch.tensor([j]) | |
else: | |
j_index = torch.tensor([j+1]) | |
perturbed_gene = torch.index_select(gene_list, 0, j_index) | |
perturbed_gene = perturbed_gene.item() | |
cell_cos_sim = torch.mean(cos_sims_data[j]).item() | |
combo_cos_sim = torch.mean(combo_cos_sims_data[j]).item() | |
cos_sims_dict[(perturbed_gene, "cell_emb")] += [(anchor_cell_cos_sim, # cos sim anchor gene alone | |
cell_cos_sim, # cos sim deleted gene alone | |
combo_cos_sim)] # cos sim anchor gene + deleted gene | |
# save dict to disk every 100 cells | |
if (i/100).is_integer(): | |
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp: | |
pickle.dump(cos_sims_dict, fp) | |
# reset and clear memory every 1000 cells | |
if (i/1000).is_integer(): | |
pickle_batch = pickle_batch+1 | |
# clear memory | |
del perturbed_gene | |
del cos_sims_data | |
if self.cell_states_to_model is None: | |
del cell_cos_sim | |
if self.cell_states_to_model is not None: | |
del cell_data | |
del data_list | |
elif self.anchor_token is None: | |
if self.emb_mode == "cell_and_gene": | |
del affected_gene | |
del cos_sim_value | |
else: | |
del combo_cos_sim | |
del combo_cos_sims_data | |
# reset dict | |
del cos_sims_dict | |
cos_sims_dict = defaultdict(list) | |
torch.cuda.empty_cache() | |
# save remainder cells | |
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp: | |
pickle.dump(cos_sims_dict, fp) |