// Copyright (c) Microsoft Corporation. All rights reserved. | |
// Licensed under the MIT License. | |
// Summary: The Ort C++ API is a header only wrapper around the Ort C API. | |
// | |
// The C++ API simplifies usage by returning values directly instead of error codes, throwing exceptions on errors | |
// and automatically releasing resources in the destructors. The primary purpose of C++ API is exception safety so | |
// all the resources follow RAII and do not leak memory. | |
// | |
// Each of the C++ wrapper classes holds only a pointer to the C internal object. Treat them like smart pointers. | |
// To create an empty object, pass 'nullptr' to the constructor (for example, Env e{nullptr};). However, you can't use them | |
// until you assign an instance that actually holds an underlying object. | |
// | |
// For Ort objects only move assignment between objects is allowed, there are no copy constructors. | |
// Some objects have explicit 'Clone' methods for this purpose. | |
// | |
// ConstXXXX types are copyable since they do not own the underlying C object, so you can pass them to functions as arguments | |
// by value or by reference. ConstXXXX types are restricted to const only interfaces. | |
// | |
// UnownedXXXX are similar to ConstXXXX but also allow non-const interfaces. | |
// | |
// The lifetime of the corresponding owning object must eclipse the lifetimes of the ConstXXXX/UnownedXXXX types. They exists so you do not | |
// have to fallback to C types and the API with the usual pitfalls. In general, do not use C API from your C++ code. | |
/** \brief All C++ Onnxruntime APIs are defined inside this namespace | |
* | |
*/ | |
namespace Ort { | |
/** \brief All C++ methods that can fail will throw an exception of this type | |
* | |
* If <tt>ORT_NO_EXCEPTIONS</tt> is defined, then any error will result in a call to abort() | |
*/ | |
struct Exception : std::exception { | |
Exception(std::string&& string, OrtErrorCode code) : message_{std::move(string)}, code_{code} {} | |
OrtErrorCode GetOrtErrorCode() const { return code_; } | |
const char* what() const noexcept override { return message_.c_str(); } | |
private: | |
std::string message_; | |
OrtErrorCode code_; | |
}; | |
// The #ifndef is for the very special case where the user of this library wants to define their own way of handling errors. | |
// NOTE: This header expects control flow to not continue after calling ORT_CXX_API_THROW | |
// This is used internally by the C++ API. This class holds the global variable that points to the OrtApi, | |
// it's in a template so that we can define a global variable in a header and make | |
// it transparent to the users of the API. | |
template <typename T> | |
struct Global { | |
static const OrtApi* api_; | |
}; | |
// If macro ORT_API_MANUAL_INIT is defined, no static initialization will be performed. Instead, user must call InitApi() before using it. | |
template <typename T> | |
const OrtApi* Global<T>::api_{}; | |
inline void InitApi() noexcept { Global<void>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION); } | |
// Used by custom operator libraries that are not linked to onnxruntime. Sets the global API object, which is | |
// required by C++ APIs. | |
// | |
// Example mycustomop.cc: | |
// | |
// #define ORT_API_MANUAL_INIT | |
// #include <onnxruntime_cxx_api.h> | |
// #undef ORT_API_MANUAL_INIT | |
// | |
// OrtStatus* ORT_API_CALL RegisterCustomOps(OrtSessionOptions* options, const OrtApiBase* api_base) { | |
// Ort::InitApi(api_base->GetApi(ORT_API_VERSION)); | |
// // ... | |
// } | |
// | |
inline void InitApi(const OrtApi* api) noexcept { Global<void>::api_ = api; } | |
// "Global initializer calls a non-constexpr function." Therefore you can't use ORT APIs in the other global initializers. | |
// Please define ORT_API_MANUAL_INIT if it conerns you. | |
const OrtApi* Global<T>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION); | |
/// This returns a reference to the OrtApi interface in use | |
inline const OrtApi& GetApi() noexcept { return *Global<void>::api_; } | |
/// <summary> | |
/// This function returns the onnxruntime version string | |
/// </summary> | |
/// <returns>version string major.minor.rev</returns> | |
std::string GetVersionString(); | |
/// <summary> | |
/// This function returns the onnxruntime build information: including git branch, | |
/// git commit id, build type(Debug/Release/RelWithDebInfo) and cmake cpp flags. | |
/// </summary> | |
/// <returns>string</returns> | |
std::string GetBuildInfoString(); | |
/// <summary> | |
/// This is a C++ wrapper for OrtApi::GetAvailableProviders() and | |
/// returns a vector of strings representing the available execution providers. | |
/// </summary> | |
/// <returns>vector of strings</returns> | |
std::vector<std::string> GetAvailableProviders(); | |
/** \brief IEEE 754 half-precision floating point data type | |
* | |
* \details This struct is used for converting float to float16 and back | |
* so the user could feed inputs and fetch outputs using these type. | |
* | |
* The size of the structure should align with uint16_t and one can freely cast | |
* uint16_t buffers to/from Ort::Float16_t to feed and retrieve data. | |
* | |
* \code{.unparsed} | |
* // This example demonstrates converion from float to float16 | |
* constexpr float values[] = {1.f, 2.f, 3.f, 4.f, 5.f}; | |
* std::vector<Ort::Float16_t> fp16_values; | |
* fp16_values.reserve(std::size(values)); | |
* std::transform(std::begin(values), std::end(values), std::back_inserter(fp16_values), | |
* [](float value) { return Ort::Float16_t(value); }); | |
* | |
* \endcode | |
*/ | |
struct Float16_t : onnxruntime_float16::Float16Impl<Float16_t> { | |
private: | |
/// <summary> | |
/// Constructor from a 16-bit representation of a float16 value | |
/// No conversion is done here. | |
/// </summary> | |
/// <param name="v">16-bit representation</param> | |
constexpr explicit Float16_t(uint16_t v) noexcept { val = v; } | |
public: | |
using Base = onnxruntime_float16::Float16Impl<Float16_t>; | |
/// <summary> | |
/// Default constructor | |
/// </summary> | |
Float16_t() = default; | |
/// <summary> | |
/// Explicit conversion to uint16_t representation of float16. | |
/// </summary> | |
/// <param name="v">uint16_t bit representation of float16</param> | |
/// <returns>new instance of Float16_t</returns> | |
constexpr static Float16_t FromBits(uint16_t v) noexcept { return Float16_t(v); } | |
/// <summary> | |
/// __ctor from float. Float is converted into float16 16-bit representation. | |
/// </summary> | |
/// <param name="v">float value</param> | |
explicit Float16_t(float v) noexcept { val = Base::ToUint16Impl(v); } | |
/// <summary> | |
/// Converts float16 to float | |
/// </summary> | |
/// <returns>float representation of float16 value</returns> | |
float ToFloat() const noexcept { return Base::ToFloatImpl(); } | |
/// <summary> | |
/// Checks if the value is negative | |
/// </summary> | |
/// <returns>true if negative</returns> | |
using Base::IsNegative; | |
/// <summary> | |
/// Tests if the value is NaN | |
/// </summary> | |
/// <returns>true if NaN</returns> | |
using Base::IsNaN; | |
/// <summary> | |
/// Tests if the value is finite | |
/// </summary> | |
/// <returns>true if finite</returns> | |
using Base::IsFinite; | |
/// <summary> | |
/// Tests if the value represents positive infinity. | |
/// </summary> | |
/// <returns>true if positive infinity</returns> | |
using Base::IsPositiveInfinity; | |
/// <summary> | |
/// Tests if the value represents negative infinity | |
/// </summary> | |
/// <returns>true if negative infinity</returns> | |
using Base::IsNegativeInfinity; | |
/// <summary> | |
/// Tests if the value is either positive or negative infinity. | |
/// </summary> | |
/// <returns>True if absolute value is infinity</returns> | |
using Base::IsInfinity; | |
/// <summary> | |
/// Tests if the value is NaN or zero. Useful for comparisons. | |
/// </summary> | |
/// <returns>True if NaN or zero.</returns> | |
using Base::IsNaNOrZero; | |
/// <summary> | |
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN). | |
/// </summary> | |
/// <returns>True if so</returns> | |
using Base::IsNormal; | |
/// <summary> | |
/// Tests if the value is subnormal (denormal). | |
/// </summary> | |
/// <returns>True if so</returns> | |
using Base::IsSubnormal; | |
/// <summary> | |
/// Creates an instance that represents absolute value. | |
/// </summary> | |
/// <returns>Absolute value</returns> | |
using Base::Abs; | |
/// <summary> | |
/// Creates a new instance with the sign flipped. | |
/// </summary> | |
/// <returns>Flipped sign instance</returns> | |
using Base::Negate; | |
/// <summary> | |
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check | |
/// for two values by or'ing the private bits together and stripping the sign. They are both zero, | |
/// and therefore equivalent, if the resulting value is still zero. | |
/// </summary> | |
/// <param name="lhs">first value</param> | |
/// <param name="rhs">second value</param> | |
/// <returns>True if both arguments represent zero</returns> | |
using Base::AreZero; | |
/// <summary> | |
/// User defined conversion operator. Converts Float16_t to float. | |
/// </summary> | |
explicit operator float() const noexcept { return ToFloat(); } | |
using Base::operator==; | |
using Base::operator!=; | |
using Base::operator<; | |
}; | |
static_assert(sizeof(Float16_t) == sizeof(uint16_t), "Sizes must match"); | |
/** \brief bfloat16 (Brain Floating Point) data type | |
* | |
* \details This struct is used for converting float to bfloat16 and back | |
* so the user could feed inputs and fetch outputs using these type. | |
* | |
* The size of the structure should align with uint16_t and one can freely cast | |
* uint16_t buffers to/from Ort::BFloat16_t to feed and retrieve data. | |
* | |
* \code{.unparsed} | |
* // This example demonstrates converion from float to float16 | |
* constexpr float values[] = {1.f, 2.f, 3.f, 4.f, 5.f}; | |
* std::vector<Ort::BFloat16_t> bfp16_values; | |
* bfp16_values.reserve(std::size(values)); | |
* std::transform(std::begin(values), std::end(values), std::back_inserter(bfp16_values), | |
* [](float value) { return Ort::BFloat16_t(value); }); | |
* | |
* \endcode | |
*/ | |
struct BFloat16_t : onnxruntime_float16::BFloat16Impl<BFloat16_t> { | |
private: | |
/// <summary> | |
/// Constructor from a uint16_t representation of bfloat16 | |
/// used in FromBits() to escape overload resolution issue with | |
/// constructor from float. | |
/// No conversion is done. | |
/// </summary> | |
/// <param name="v">16-bit bfloat16 value</param> | |
constexpr explicit BFloat16_t(uint16_t v) noexcept { val = v; } | |
public: | |
using Base = onnxruntime_float16::BFloat16Impl<BFloat16_t>; | |
BFloat16_t() = default; | |
/// <summary> | |
/// Explicit conversion to uint16_t representation of bfloat16. | |
/// </summary> | |
/// <param name="v">uint16_t bit representation of bfloat16</param> | |
/// <returns>new instance of BFloat16_t</returns> | |
static constexpr BFloat16_t FromBits(uint16_t v) noexcept { return BFloat16_t(v); } | |
/// <summary> | |
/// __ctor from float. Float is converted into bfloat16 16-bit representation. | |
/// </summary> | |
/// <param name="v">float value</param> | |
explicit BFloat16_t(float v) noexcept { val = Base::ToUint16Impl(v); } | |
/// <summary> | |
/// Converts bfloat16 to float | |
/// </summary> | |
/// <returns>float representation of bfloat16 value</returns> | |
float ToFloat() const noexcept { return Base::ToFloatImpl(); } | |
/// <summary> | |
/// Checks if the value is negative | |
/// </summary> | |
/// <returns>true if negative</returns> | |
using Base::IsNegative; | |
/// <summary> | |
/// Tests if the value is NaN | |
/// </summary> | |
/// <returns>true if NaN</returns> | |
using Base::IsNaN; | |
/// <summary> | |
/// Tests if the value is finite | |
/// </summary> | |
/// <returns>true if finite</returns> | |
using Base::IsFinite; | |
/// <summary> | |
/// Tests if the value represents positive infinity. | |
/// </summary> | |
/// <returns>true if positive infinity</returns> | |
using Base::IsPositiveInfinity; | |
/// <summary> | |
/// Tests if the value represents negative infinity | |
/// </summary> | |
/// <returns>true if negative infinity</returns> | |
using Base::IsNegativeInfinity; | |
/// <summary> | |
/// Tests if the value is either positive or negative infinity. | |
/// </summary> | |
/// <returns>True if absolute value is infinity</returns> | |
using Base::IsInfinity; | |
/// <summary> | |
/// Tests if the value is NaN or zero. Useful for comparisons. | |
/// </summary> | |
/// <returns>True if NaN or zero.</returns> | |
using Base::IsNaNOrZero; | |
/// <summary> | |
/// Tests if the value is normal (not zero, subnormal, infinite, or NaN). | |
/// </summary> | |
/// <returns>True if so</returns> | |
using Base::IsNormal; | |
/// <summary> | |
/// Tests if the value is subnormal (denormal). | |
/// </summary> | |
/// <returns>True if so</returns> | |
using Base::IsSubnormal; | |
/// <summary> | |
/// Creates an instance that represents absolute value. | |
/// </summary> | |
/// <returns>Absolute value</returns> | |
using Base::Abs; | |
/// <summary> | |
/// Creates a new instance with the sign flipped. | |
/// </summary> | |
/// <returns>Flipped sign instance</returns> | |
using Base::Negate; | |
/// <summary> | |
/// IEEE defines that positive and negative zero are equal, this gives us a quick equality check | |
/// for two values by or'ing the private bits together and stripping the sign. They are both zero, | |
/// and therefore equivalent, if the resulting value is still zero. | |
/// </summary> | |
/// <param name="lhs">first value</param> | |
/// <param name="rhs">second value</param> | |
/// <returns>True if both arguments represent zero</returns> | |
using Base::AreZero; | |
/// <summary> | |
/// User defined conversion operator. Converts BFloat16_t to float. | |
/// </summary> | |
explicit operator float() const noexcept { return ToFloat(); } | |
// We do not have an inherited impl for the below operators | |
// as the internal class implements them a little differently | |
bool operator==(const BFloat16_t& rhs) const noexcept; | |
bool operator!=(const BFloat16_t& rhs) const noexcept { return !(*this == rhs); } | |
bool operator<(const BFloat16_t& rhs) const noexcept; | |
}; | |
static_assert(sizeof(BFloat16_t) == sizeof(uint16_t), "Sizes must match"); | |
/** \brief float8e4m3fn (Float8 Floating Point) data type | |
* \details It is necessary for type dispatching to make use of C++ API | |
* The type is implicitly convertible to/from uint8_t. | |
* See https://onnx.ai/onnx/technical/float8.html for further details. | |
*/ | |
struct Float8E4M3FN_t { | |
uint8_t value; | |
constexpr Float8E4M3FN_t() noexcept : value(0) {} | |
constexpr Float8E4M3FN_t(uint8_t v) noexcept : value(v) {} | |
constexpr operator uint8_t() const noexcept { return value; } | |
// nan values are treated like any other value for operator ==, != | |
constexpr bool operator==(const Float8E4M3FN_t& rhs) const noexcept { return value == rhs.value; }; | |
constexpr bool operator!=(const Float8E4M3FN_t& rhs) const noexcept { return value != rhs.value; }; | |
}; | |
static_assert(sizeof(Float8E4M3FN_t) == sizeof(uint8_t), "Sizes must match"); | |
/** \brief float8e4m3fnuz (Float8 Floating Point) data type | |
* \details It is necessary for type dispatching to make use of C++ API | |
* The type is implicitly convertible to/from uint8_t. | |
* See https://onnx.ai/onnx/technical/float8.html for further details. | |
*/ | |
struct Float8E4M3FNUZ_t { | |
uint8_t value; | |
constexpr Float8E4M3FNUZ_t() noexcept : value(0) {} | |
constexpr Float8E4M3FNUZ_t(uint8_t v) noexcept : value(v) {} | |
constexpr operator uint8_t() const noexcept { return value; } | |
// nan values are treated like any other value for operator ==, != | |
constexpr bool operator==(const Float8E4M3FNUZ_t& rhs) const noexcept { return value == rhs.value; }; | |
constexpr bool operator!=(const Float8E4M3FNUZ_t& rhs) const noexcept { return value != rhs.value; }; | |
}; | |
static_assert(sizeof(Float8E4M3FNUZ_t) == sizeof(uint8_t), "Sizes must match"); | |
/** \brief float8e5m2 (Float8 Floating Point) data type | |
* \details It is necessary for type dispatching to make use of C++ API | |
* The type is implicitly convertible to/from uint8_t. | |
* See https://onnx.ai/onnx/technical/float8.html for further details. | |
*/ | |
struct Float8E5M2_t { | |
uint8_t value; | |
constexpr Float8E5M2_t() noexcept : value(0) {} | |
constexpr Float8E5M2_t(uint8_t v) noexcept : value(v) {} | |
constexpr operator uint8_t() const noexcept { return value; } | |
// nan values are treated like any other value for operator ==, != | |
constexpr bool operator==(const Float8E5M2_t& rhs) const noexcept { return value == rhs.value; }; | |
constexpr bool operator!=(const Float8E5M2_t& rhs) const noexcept { return value != rhs.value; }; | |
}; | |
static_assert(sizeof(Float8E5M2_t) == sizeof(uint8_t), "Sizes must match"); | |
/** \brief float8e5m2fnuz (Float8 Floating Point) data type | |
* \details It is necessary for type dispatching to make use of C++ API | |
* The type is implicitly convertible to/from uint8_t. | |
* See https://onnx.ai/onnx/technical/float8.html for further details. | |
*/ | |
struct Float8E5M2FNUZ_t { | |
uint8_t value; | |
constexpr Float8E5M2FNUZ_t() noexcept : value(0) {} | |
constexpr Float8E5M2FNUZ_t(uint8_t v) noexcept : value(v) {} | |
constexpr operator uint8_t() const noexcept { return value; } | |
// nan values are treated like any other value for operator ==, != | |
constexpr bool operator==(const Float8E5M2FNUZ_t& rhs) const noexcept { return value == rhs.value; }; | |
constexpr bool operator!=(const Float8E5M2FNUZ_t& rhs) const noexcept { return value != rhs.value; }; | |
}; | |
static_assert(sizeof(Float8E5M2FNUZ_t) == sizeof(uint8_t), "Sizes must match"); | |
namespace detail { | |
// This is used internally by the C++ API. This macro is to make it easy to generate overloaded methods for all of the various OrtRelease* functions for every Ort* type | |
// This can't be done in the C API since C doesn't have function overloading. | |
ORT_DEFINE_RELEASE(Allocator); | |
ORT_DEFINE_RELEASE(MemoryInfo); | |
ORT_DEFINE_RELEASE(CustomOpDomain); | |
ORT_DEFINE_RELEASE(ThreadingOptions); | |
ORT_DEFINE_RELEASE(Env); | |
ORT_DEFINE_RELEASE(RunOptions); | |
ORT_DEFINE_RELEASE(Session); | |
ORT_DEFINE_RELEASE(SessionOptions); | |
ORT_DEFINE_RELEASE(TensorTypeAndShapeInfo); | |
ORT_DEFINE_RELEASE(SequenceTypeInfo); | |
ORT_DEFINE_RELEASE(MapTypeInfo); | |
ORT_DEFINE_RELEASE(TypeInfo); | |
ORT_DEFINE_RELEASE(Value); | |
ORT_DEFINE_RELEASE(ModelMetadata); | |
ORT_DEFINE_RELEASE(IoBinding); | |
ORT_DEFINE_RELEASE(ArenaCfg); | |
ORT_DEFINE_RELEASE(Status); | |
ORT_DEFINE_RELEASE(OpAttr); | |
ORT_DEFINE_RELEASE(Op); | |
ORT_DEFINE_RELEASE(KernelInfo); | |
/** \brief This is a tagging template type. Use it with Base<T> to indicate that the C++ interface object | |
* has no ownership of the underlying C object. | |
*/ | |
template <typename T> | |
struct Unowned { | |
using Type = T; | |
}; | |
/** \brief Used internally by the C++ API. C++ wrapper types inherit from this. | |
* This is a zero cost abstraction to wrap the C API objects and delete them on destruction. | |
* | |
* All of the C++ classes | |
* a) serve as containers for pointers to objects that are created by the underlying C API. | |
* Their size is just a pointer size, no need to dynamically allocate them. Use them by value. | |
* b) Each of struct XXXX, XXX instances function as smart pointers to the underlying C API objects. | |
* they would release objects owned automatically when going out of scope, they are move-only. | |
* c) ConstXXXX and UnownedXXX structs function as non-owning, copyable containers for the above pointers. | |
* ConstXXXX allow calling const interfaces only. They give access to objects that are owned by somebody else | |
* such as Onnxruntime or instances of XXXX classes. | |
* d) serve convenient interfaces that return C++ objects and further enhance exception and type safety so they can be used | |
* in C++ code. | |
* | |
*/ | |
/// <summary> | |
/// This is a non-const pointer holder that is move-only. Disposes of the pointer on destruction. | |
/// </summary> | |
template <typename T> | |
struct Base { | |
using contained_type = T; | |
constexpr Base() = default; | |
constexpr explicit Base(contained_type* p) noexcept : p_{p} {} | |
~Base() { OrtRelease(p_); } | |
Base(const Base&) = delete; | |
Base& operator=(const Base&) = delete; | |
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; } | |
Base& operator=(Base&& v) noexcept { | |
OrtRelease(p_); | |
p_ = v.release(); | |
return *this; | |
} | |
constexpr operator contained_type*() const noexcept { return p_; } | |
/// \brief Relinquishes ownership of the contained C object pointer | |
/// The underlying object is not destroyed | |
contained_type* release() { | |
T* p = p_; | |
p_ = nullptr; | |
return p; | |
} | |
protected: | |
contained_type* p_{}; | |
}; | |
// Undefined. For const types use Base<Unowned<const T>> | |
template <typename T> | |
struct Base<const T>; | |
/// <summary> | |
/// Covers unowned pointers owned by either the ORT | |
/// or some other instance of CPP wrappers. | |
/// Used for ConstXXX and UnownedXXXX types that are copyable. | |
/// Also convenient to wrap raw OrtXX pointers . | |
/// </summary> | |
/// <typeparam name="T"></typeparam> | |
template <typename T> | |
struct Base<Unowned<T>> { | |
using contained_type = typename Unowned<T>::Type; | |
constexpr Base() = default; | |
constexpr explicit Base(contained_type* p) noexcept : p_{p} {} | |
~Base() = default; | |
Base(const Base&) = default; | |
Base& operator=(const Base&) = default; | |
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; } | |
Base& operator=(Base&& v) noexcept { | |
p_ = nullptr; | |
std::swap(p_, v.p_); | |
return *this; | |
} | |
constexpr operator contained_type*() const noexcept { return p_; } | |
protected: | |
contained_type* p_{}; | |
}; | |
// Light functor to release memory with OrtAllocator | |
struct AllocatedFree { | |
OrtAllocator* allocator_; | |
explicit AllocatedFree(OrtAllocator* allocator) | |
: allocator_(allocator) {} | |
void operator()(void* ptr) const { | |
if (ptr) allocator_->Free(allocator_, ptr); | |
} | |
}; | |
} // namespace detail | |
struct AllocatorWithDefaultOptions; | |
struct Env; | |
struct TypeInfo; | |
struct Value; | |
struct ModelMetadata; | |
/** \brief unique_ptr typedef used to own strings allocated by OrtAllocators | |
* and release them at the end of the scope. The lifespan of the given allocator | |
* must eclipse the lifespan of AllocatedStringPtr instance | |
*/ | |
using AllocatedStringPtr = std::unique_ptr<char, detail::AllocatedFree>; | |
/** \brief The Status that holds ownership of OrtStatus received from C API | |
* Use it to safely destroy OrtStatus* returned from the C API. Use appropriate | |
* constructors to construct an instance of a Status object from exceptions. | |
*/ | |
struct Status : detail::Base<OrtStatus> { | |
explicit Status(std::nullptr_t) noexcept {} ///< Create an empty object, must be assigned a valid one to be used | |
explicit Status(OrtStatus* status) noexcept; ///< Takes ownership of OrtStatus instance returned from the C API. | |
explicit Status(const Exception&) noexcept; ///< Creates status instance out of exception | |
explicit Status(const std::exception&) noexcept; ///< Creates status instance out of exception | |
Status(const char* message, OrtErrorCode code) noexcept; ///< Creates status instance out of null-terminated string message. | |
std::string GetErrorMessage() const; | |
OrtErrorCode GetErrorCode() const; | |
bool IsOK() const noexcept; ///< Returns true if instance represents an OK (non-error) status. | |
}; | |
/** \brief The ThreadingOptions | |
* | |
* The ThreadingOptions used for set global threadpools' options of The Env. | |
*/ | |
struct ThreadingOptions : detail::Base<OrtThreadingOptions> { | |
/// \brief Wraps OrtApi::CreateThreadingOptions | |
ThreadingOptions(); | |
/// \brief Wraps OrtApi::SetGlobalIntraOpNumThreads | |
ThreadingOptions& SetGlobalIntraOpNumThreads(int intra_op_num_threads); | |
/// \brief Wraps OrtApi::SetGlobalInterOpNumThreads | |
ThreadingOptions& SetGlobalInterOpNumThreads(int inter_op_num_threads); | |
/// \brief Wraps OrtApi::SetGlobalSpinControl | |
ThreadingOptions& SetGlobalSpinControl(int allow_spinning); | |
/// \brief Wraps OrtApi::SetGlobalDenormalAsZero | |
ThreadingOptions& SetGlobalDenormalAsZero(); | |
/// \brief Wraps OrtApi::SetGlobalCustomCreateThreadFn | |
ThreadingOptions& SetGlobalCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn); | |
/// \brief Wraps OrtApi::SetGlobalCustomThreadCreationOptions | |
ThreadingOptions& SetGlobalCustomThreadCreationOptions(void* ort_custom_thread_creation_options); | |
/// \brief Wraps OrtApi::SetGlobalCustomJoinThreadFn | |
ThreadingOptions& SetGlobalCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn); | |
}; | |
/** \brief The Env (Environment) | |
* | |
* The Env holds the logging state used by all other objects. | |
* <b>Note:</b> One Env must be created before using any other Onnxruntime functionality | |
*/ | |
struct Env : detail::Base<OrtEnv> { | |
explicit Env(std::nullptr_t) {} ///< Create an empty Env object, must be assigned a valid one to be used | |
/// \brief Wraps OrtApi::CreateEnv | |
Env(OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = ""); | |
/// \brief Wraps OrtApi::CreateEnvWithCustomLogger | |
Env(OrtLoggingLevel logging_level, const char* logid, OrtLoggingFunction logging_function, void* logger_param); | |
/// \brief Wraps OrtApi::CreateEnvWithGlobalThreadPools | |
Env(const OrtThreadingOptions* tp_options, OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = ""); | |
/// \brief Wraps OrtApi::CreateEnvWithCustomLoggerAndGlobalThreadPools | |
Env(const OrtThreadingOptions* tp_options, OrtLoggingFunction logging_function, void* logger_param, | |
OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = ""); | |
/// \brief C Interop Helper | |
explicit Env(OrtEnv* p) : Base<OrtEnv>{p} {} | |
Env& EnableTelemetryEvents(); ///< Wraps OrtApi::EnableTelemetryEvents | |
Env& DisableTelemetryEvents(); ///< Wraps OrtApi::DisableTelemetryEvents | |
Env& UpdateEnvWithCustomLogLevel(OrtLoggingLevel log_severity_level); ///< Wraps OrtApi::UpdateEnvWithCustomLogLevel | |
Env& CreateAndRegisterAllocator(const OrtMemoryInfo* mem_info, const OrtArenaCfg* arena_cfg); ///< Wraps OrtApi::CreateAndRegisterAllocator | |
Env& CreateAndRegisterAllocatorV2(const std::string& provider_type, const OrtMemoryInfo* mem_info, const std::unordered_map<std::string, std::string>& options, const OrtArenaCfg* arena_cfg); ///< Wraps OrtApi::CreateAndRegisterAllocatorV2 | |
}; | |
/** \brief Custom Op Domain | |
* | |
*/ | |
struct CustomOpDomain : detail::Base<OrtCustomOpDomain> { | |
explicit CustomOpDomain(std::nullptr_t) {} ///< Create an empty CustomOpDomain object, must be assigned a valid one to be used | |
/// \brief Wraps OrtApi::CreateCustomOpDomain | |
explicit CustomOpDomain(const char* domain); | |
// This does not take ownership of the op, simply registers it. | |
void Add(const OrtCustomOp* op); ///< Wraps CustomOpDomain_Add | |
}; | |
/** \brief RunOptions | |
* | |
*/ | |
struct RunOptions : detail::Base<OrtRunOptions> { | |
explicit RunOptions(std::nullptr_t) {} ///< Create an empty RunOptions object, must be assigned a valid one to be used | |
RunOptions(); ///< Wraps OrtApi::CreateRunOptions | |
RunOptions& SetRunLogVerbosityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogVerbosityLevel | |
int GetRunLogVerbosityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogVerbosityLevel | |
RunOptions& SetRunLogSeverityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogSeverityLevel | |
int GetRunLogSeverityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogSeverityLevel | |
RunOptions& SetRunTag(const char* run_tag); ///< wraps OrtApi::RunOptionsSetRunTag | |
const char* GetRunTag() const; ///< Wraps OrtApi::RunOptionsGetRunTag | |
RunOptions& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddRunConfigEntry | |
/** \brief Terminates all currently executing Session::Run calls that were made using this RunOptions instance | |
* | |
* If a currently executing session needs to be force terminated, this can be called from another thread to force it to fail with an error | |
* Wraps OrtApi::RunOptionsSetTerminate | |
*/ | |
RunOptions& SetTerminate(); | |
/** \brief Clears the terminate flag so this RunOptions instance can be used in a new Session::Run call without it instantly terminating | |
* | |
* Wraps OrtApi::RunOptionsUnsetTerminate | |
*/ | |
RunOptions& UnsetTerminate(); | |
}; | |
namespace detail { | |
// Utility function that returns a SessionOption config entry key for a specific custom operator. | |
// Ex: custom_op.[custom_op_name].[config] | |
std::string MakeCustomOpConfigEntryKey(const char* custom_op_name, const char* config); | |
} // namespace detail | |
/// <summary> | |
/// Class that represents session configuration entries for one or more custom operators. | |
/// | |
/// Example: | |
/// Ort::CustomOpConfigs op_configs; | |
/// op_configs.AddConfig("my_custom_op", "device_type", "CPU"); | |
/// | |
/// Passed to Ort::SessionOptions::RegisterCustomOpsLibrary. | |
/// </summary> | |
struct CustomOpConfigs { | |
CustomOpConfigs() = default; | |
~CustomOpConfigs() = default; | |
CustomOpConfigs(const CustomOpConfigs&) = default; | |
CustomOpConfigs& operator=(const CustomOpConfigs&) = default; | |
CustomOpConfigs(CustomOpConfigs&& o) = default; | |
CustomOpConfigs& operator=(CustomOpConfigs&& o) = default; | |
/** \brief Adds a session configuration entry/value for a specific custom operator. | |
* | |
* \param custom_op_name The name of the custom operator for which to add a configuration entry. | |
* Must match the name returned by the CustomOp's GetName() method. | |
* \param config_key The name of the configuration entry. | |
* \param config_value The value of the configuration entry. | |
* \return A reference to this object to enable call chaining. | |
*/ | |
CustomOpConfigs& AddConfig(const char* custom_op_name, const char* config_key, const char* config_value); | |
/** \brief Returns a flattened map of custom operator configuration entries and their values. | |
* | |
* The keys has been flattened to include both the custom operator name and the configuration entry key name. | |
* For example, a prior call to AddConfig("my_op", "key", "value") corresponds to the flattened key/value pair | |
* {"my_op.key", "value"}. | |
* | |
* \return An unordered map of flattened configurations. | |
*/ | |
const std::unordered_map<std::string, std::string>& GetFlattenedConfigs() const; | |
private: | |
std::unordered_map<std::string, std::string> flat_configs_; | |
}; | |
/** \brief Options object used when creating a new Session object | |
* | |
* Wraps ::OrtSessionOptions object and methods | |
*/ | |
struct SessionOptions; | |
namespace detail { | |
// we separate const-only methods because passing const ptr to non-const methods | |
// is only discovered when inline methods are compiled which is counter-intuitive | |
template <typename T> | |
struct ConstSessionOptionsImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
SessionOptions Clone() const; ///< Creates and returns a copy of this SessionOptions object. Wraps OrtApi::CloneSessionOptions | |
std::string GetConfigEntry(const char* config_key) const; ///< Wraps OrtApi::GetSessionConfigEntry | |
bool HasConfigEntry(const char* config_key) const; ///< Wraps OrtApi::HasSessionConfigEntry | |
std::string GetConfigEntryOrDefault(const char* config_key, const std::string& def); | |
}; | |
template <typename T> | |
struct SessionOptionsImpl : ConstSessionOptionsImpl<T> { | |
using B = ConstSessionOptionsImpl<T>; | |
using B::B; | |
SessionOptionsImpl& SetIntraOpNumThreads(int intra_op_num_threads); ///< Wraps OrtApi::SetIntraOpNumThreads | |
SessionOptionsImpl& SetInterOpNumThreads(int inter_op_num_threads); ///< Wraps OrtApi::SetInterOpNumThreads | |
SessionOptionsImpl& SetGraphOptimizationLevel(GraphOptimizationLevel graph_optimization_level); ///< Wraps OrtApi::SetSessionGraphOptimizationLevel | |
SessionOptionsImpl& EnableCpuMemArena(); ///< Wraps OrtApi::EnableCpuMemArena | |
SessionOptionsImpl& DisableCpuMemArena(); ///< Wraps OrtApi::DisableCpuMemArena | |
SessionOptionsImpl& SetOptimizedModelFilePath(const ORTCHAR_T* optimized_model_file); ///< Wraps OrtApi::SetOptimizedModelFilePath | |
SessionOptionsImpl& EnableProfiling(const ORTCHAR_T* profile_file_prefix); ///< Wraps OrtApi::EnableProfiling | |
SessionOptionsImpl& DisableProfiling(); ///< Wraps OrtApi::DisableProfiling | |
SessionOptionsImpl& EnableOrtCustomOps(); ///< Wraps OrtApi::EnableOrtCustomOps | |
SessionOptionsImpl& EnableMemPattern(); ///< Wraps OrtApi::EnableMemPattern | |
SessionOptionsImpl& DisableMemPattern(); ///< Wraps OrtApi::DisableMemPattern | |
SessionOptionsImpl& SetExecutionMode(ExecutionMode execution_mode); ///< Wraps OrtApi::SetSessionExecutionMode | |
SessionOptionsImpl& SetLogId(const char* logid); ///< Wraps OrtApi::SetSessionLogId | |
SessionOptionsImpl& SetLogSeverityLevel(int level); ///< Wraps OrtApi::SetSessionLogSeverityLevel | |
SessionOptionsImpl& Add(OrtCustomOpDomain* custom_op_domain); ///< Wraps OrtApi::AddCustomOpDomain | |
SessionOptionsImpl& DisablePerSessionThreads(); ///< Wraps OrtApi::DisablePerSessionThreads | |
SessionOptionsImpl& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddSessionConfigEntry | |
SessionOptionsImpl& AddInitializer(const char* name, const OrtValue* ort_val); ///< Wraps OrtApi::AddInitializer | |
SessionOptionsImpl& AddExternalInitializers(const std::vector<std::string>& names, const std::vector<Value>& ort_values); ///< Wraps OrtApi::AddExternalInitializers | |
SessionOptionsImpl& AppendExecutionProvider_CUDA(const OrtCUDAProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA | |
SessionOptionsImpl& AppendExecutionProvider_CUDA_V2(const OrtCUDAProviderOptionsV2& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA_V2 | |
SessionOptionsImpl& AppendExecutionProvider_ROCM(const OrtROCMProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_ROCM | |
SessionOptionsImpl& AppendExecutionProvider_OpenVINO(const OrtOpenVINOProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_OpenVINO | |
SessionOptionsImpl& AppendExecutionProvider_TensorRT(const OrtTensorRTProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT | |
SessionOptionsImpl& AppendExecutionProvider_TensorRT_V2(const OrtTensorRTProviderOptionsV2& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT | |
SessionOptionsImpl& AppendExecutionProvider_MIGraphX(const OrtMIGraphXProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_MIGraphX | |
///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CANN | |
SessionOptionsImpl& AppendExecutionProvider_CANN(const OrtCANNProviderOptions& provider_options); | |
///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_Dnnl | |
SessionOptionsImpl& AppendExecutionProvider_Dnnl(const OrtDnnlProviderOptions& provider_options); | |
/// Wraps OrtApi::SessionOptionsAppendExecutionProvider. Currently supports QNN, SNPE and XNNPACK. | |
SessionOptionsImpl& AppendExecutionProvider(const std::string& provider_name, | |
const std::unordered_map<std::string, std::string>& provider_options = {}); | |
SessionOptionsImpl& SetCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomCreateThreadFn | |
SessionOptionsImpl& SetCustomThreadCreationOptions(void* ort_custom_thread_creation_options); ///< Wraps OrtApi::SessionOptionsSetCustomThreadCreationOptions | |
SessionOptionsImpl& SetCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomJoinThreadFn | |
///< Registers the custom operator from the specified shared library via OrtApi::RegisterCustomOpsLibrary_V2. | |
///< The custom operator configurations are optional. If provided, custom operator configs are set via | |
///< OrtApi::AddSessionConfigEntry. | |
SessionOptionsImpl& RegisterCustomOpsLibrary(const ORTCHAR_T* library_name, const CustomOpConfigs& custom_op_configs = {}); | |
SessionOptionsImpl& RegisterCustomOpsUsingFunction(const char* function_name); ///< Wraps OrtApi::RegisterCustomOpsUsingFunction | |
}; | |
} // namespace detail | |
using UnownedSessionOptions = detail::SessionOptionsImpl<detail::Unowned<OrtSessionOptions>>; | |
using ConstSessionOptions = detail::ConstSessionOptionsImpl<detail::Unowned<const OrtSessionOptions>>; | |
/** \brief Wrapper around ::OrtSessionOptions | |
* | |
*/ | |
struct SessionOptions : detail::SessionOptionsImpl<OrtSessionOptions> { | |
explicit SessionOptions(std::nullptr_t) {} ///< Create an empty SessionOptions object, must be assigned a valid one to be used | |
SessionOptions(); ///< Wraps OrtApi::CreateSessionOptions | |
explicit SessionOptions(OrtSessionOptions* p) : SessionOptionsImpl<OrtSessionOptions>{p} {} ///< Used for interop with the C API | |
UnownedSessionOptions GetUnowned() const { return UnownedSessionOptions{this->p_}; } | |
ConstSessionOptions GetConst() const { return ConstSessionOptions{this->p_}; } | |
}; | |
/** \brief Wrapper around ::OrtModelMetadata | |
* | |
*/ | |
struct ModelMetadata : detail::Base<OrtModelMetadata> { | |
explicit ModelMetadata(std::nullptr_t) {} ///< Create an empty ModelMetadata object, must be assigned a valid one to be used | |
explicit ModelMetadata(OrtModelMetadata* p) : Base<OrtModelMetadata>{p} {} ///< Used for interop with the C API | |
/** \brief Returns a copy of the producer name. | |
* | |
* \param allocator to allocate memory for the copy of the name returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetProducerNameAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetProducerName | |
/** \brief Returns a copy of the graph name. | |
* | |
* \param allocator to allocate memory for the copy of the name returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetGraphNameAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphName | |
/** \brief Returns a copy of the domain name. | |
* | |
* \param allocator to allocate memory for the copy of the name returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetDomainAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDomain | |
/** \brief Returns a copy of the description. | |
* | |
* \param allocator to allocate memory for the copy of the string returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetDescriptionAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDescription | |
/** \brief Returns a copy of the graph description. | |
* | |
* \param allocator to allocate memory for the copy of the string returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetGraphDescriptionAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphDescription | |
/** \brief Returns a vector of copies of the custom metadata keys. | |
* | |
* \param allocator to allocate memory for the copy of the string returned | |
* \return a instance std::vector of smart pointers that would deallocate the buffers when out of scope. | |
* The OrtAllocator instance must be valid at the point of memory release. | |
*/ | |
std::vector<AllocatedStringPtr> GetCustomMetadataMapKeysAllocated(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetCustomMetadataMapKeys | |
/** \brief Looks up a value by a key in the Custom Metadata map | |
* | |
* \param key zero terminated string key to lookup | |
* \param allocator to allocate memory for the copy of the string returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* maybe nullptr if key is not found. | |
* | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr LookupCustomMetadataMapAllocated(const char* key, OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataLookupCustomMetadataMap | |
int64_t GetVersion() const; ///< Wraps OrtApi::ModelMetadataGetVersion | |
}; | |
struct IoBinding; | |
namespace detail { | |
// we separate const-only methods because passing const ptr to non-const methods | |
// is only discovered when inline methods are compiled which is counter-intuitive | |
template <typename T> | |
struct ConstSessionImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
size_t GetInputCount() const; ///< Returns the number of model inputs | |
size_t GetOutputCount() const; ///< Returns the number of model outputs | |
size_t GetOverridableInitializerCount() const; ///< Returns the number of inputs that have defaults that can be overridden | |
/** \brief Returns a copy of input name at the specified index. | |
* | |
* \param index must less than the value returned by GetInputCount() | |
* \param allocator to allocate memory for the copy of the name returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetInputNameAllocated(size_t index, OrtAllocator* allocator) const; | |
/** \brief Returns a copy of output name at then specified index. | |
* | |
* \param index must less than the value returned by GetOutputCount() | |
* \param allocator to allocate memory for the copy of the name returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetOutputNameAllocated(size_t index, OrtAllocator* allocator) const; | |
/** \brief Returns a copy of the overridable initializer name at then specified index. | |
* | |
* \param index must less than the value returned by GetOverridableInitializerCount() | |
* \param allocator to allocate memory for the copy of the name returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr GetOverridableInitializerNameAllocated(size_t index, OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionGetOverridableInitializerName | |
uint64_t GetProfilingStartTimeNs() const; ///< Wraps OrtApi::SessionGetProfilingStartTimeNs | |
ModelMetadata GetModelMetadata() const; ///< Wraps OrtApi::SessionGetModelMetadata | |
TypeInfo GetInputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetInputTypeInfo | |
TypeInfo GetOutputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOutputTypeInfo | |
TypeInfo GetOverridableInitializerTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOverridableInitializerTypeInfo | |
}; | |
template <typename T> | |
struct SessionImpl : ConstSessionImpl<T> { | |
using B = ConstSessionImpl<T>; | |
using B::B; | |
/** \brief Run the model returning results in an Ort allocated vector. | |
* | |
* Wraps OrtApi::Run | |
* | |
* The caller provides a list of inputs and a list of the desired outputs to return. | |
* | |
* See the output logs for more information on warnings/errors that occur while processing the model. | |
* Common errors are.. (TODO) | |
* | |
* \param[in] run_options | |
* \param[in] input_names Array of null terminated strings of length input_count that is the list of input names | |
* \param[in] input_values Array of Value objects of length input_count that is the list of input values | |
* \param[in] input_count Number of inputs (the size of the input_names & input_values arrays) | |
* \param[in] output_names Array of C style strings of length output_count that is the list of output names | |
* \param[in] output_count Number of outputs (the size of the output_names array) | |
* \return A std::vector of Value objects that directly maps to the output_names array (eg. output_name[0] is the first entry of the returned vector) | |
*/ | |
std::vector<Value> Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, | |
const char* const* output_names, size_t output_count); | |
/** \brief Run the model returning results in user provided outputs | |
* Same as Run(const RunOptions&, const char* const*, const Value*, size_t,const char* const*, size_t) | |
*/ | |
void Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, | |
const char* const* output_names, Value* output_values, size_t output_count); | |
void Run(const RunOptions& run_options, const IoBinding&); ///< Wraps OrtApi::RunWithBinding | |
/** \brief Run the model asynchronously in a thread owned by intra op thread pool | |
* | |
* Wraps OrtApi::RunAsync | |
* | |
* \param[in] run_options | |
* \param[in] input_names Array of null terminated UTF8 encoded strings of the input names | |
* \param[in] input_values Array of Value objects of length input_count | |
* \param[in] input_count Number of elements in the input_names and inputs arrays | |
* \param[in] output_names Array of null terminated UTF8 encoded strings of the output names | |
* \param[out] output_values Array of provided Values to be filled with outputs. | |
* On calling RunAsync, output_values[i] could either be initialized by a null pointer or a preallocated OrtValue*. | |
* Later, on invoking the callback, each output_values[i] of null will be filled with an OrtValue* allocated by onnxruntime. | |
* Then, an OrtValue** pointer will be casted from output_values, and pass to the callback. | |
* NOTE: it is customer's duty to finally release output_values and each of its member, | |
* regardless of whether the member (Ort::Value) is allocated by onnxruntime or preallocated by the customer. | |
* \param[in] output_count Number of elements in the output_names and outputs array | |
* \param[in] callback Callback function on model run completion | |
* \param[in] user_data User data that pass back to the callback | |
*/ | |
void RunAsync(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, | |
const char* const* output_names, Value* output_values, size_t output_count, RunAsyncCallbackFn callback, void* user_data); | |
/** \brief End profiling and return a copy of the profiling file name. | |
* | |
* \param allocator to allocate memory for the copy of the string returned | |
* \return a instance of smart pointer that would deallocate the buffer when out of scope. | |
* The OrtAllocator instances must be valid at the point of memory release. | |
*/ | |
AllocatedStringPtr EndProfilingAllocated(OrtAllocator* allocator); ///< Wraps OrtApi::SessionEndProfiling | |
}; | |
} // namespace detail | |
using ConstSession = detail::ConstSessionImpl<detail::Unowned<const OrtSession>>; | |
using UnownedSession = detail::SessionImpl<detail::Unowned<OrtSession>>; | |
/** \brief Wrapper around ::OrtSession | |
* | |
*/ | |
struct Session : detail::SessionImpl<OrtSession> { | |
explicit Session(std::nullptr_t) {} ///< Create an empty Session object, must be assigned a valid one to be used | |
Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options); ///< Wraps OrtApi::CreateSession | |
Session(const Env& env, const ORTCHAR_T* model_path, const SessionOptions& options, | |
OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionWithPrepackedWeightsContainer | |
Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options); ///< Wraps OrtApi::CreateSessionFromArray | |
Session(const Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options, | |
OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionFromArrayWithPrepackedWeightsContainer | |
ConstSession GetConst() const { return ConstSession{this->p_}; } | |
UnownedSession GetUnowned() const { return UnownedSession{this->p_}; } | |
}; | |
namespace detail { | |
template <typename T> | |
struct MemoryInfoImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
std::string GetAllocatorName() const; | |
OrtAllocatorType GetAllocatorType() const; | |
int GetDeviceId() const; | |
OrtMemoryInfoDeviceType GetDeviceType() const; | |
OrtMemType GetMemoryType() const; | |
template <typename U> | |
bool operator==(const MemoryInfoImpl<U>& o) const; | |
}; | |
} // namespace detail | |
// Const object holder that does not own the underlying object | |
using ConstMemoryInfo = detail::MemoryInfoImpl<detail::Unowned<const OrtMemoryInfo>>; | |
/** \brief Wrapper around ::OrtMemoryInfo | |
* | |
*/ | |
struct MemoryInfo : detail::MemoryInfoImpl<OrtMemoryInfo> { | |
static MemoryInfo CreateCpu(OrtAllocatorType type, OrtMemType mem_type1); | |
explicit MemoryInfo(std::nullptr_t) {} ///< No instance is created | |
explicit MemoryInfo(OrtMemoryInfo* p) : MemoryInfoImpl<OrtMemoryInfo>{p} {} ///< Take ownership of a pointer created by C Api | |
MemoryInfo(const char* name, OrtAllocatorType type, int id, OrtMemType mem_type); | |
ConstMemoryInfo GetConst() const { return ConstMemoryInfo{this->p_}; } | |
}; | |
namespace detail { | |
template <typename T> | |
struct TensorTypeAndShapeInfoImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
ONNXTensorElementDataType GetElementType() const; ///< Wraps OrtApi::GetTensorElementType | |
size_t GetElementCount() const; ///< Wraps OrtApi::GetTensorShapeElementCount | |
size_t GetDimensionsCount() const; ///< Wraps OrtApi::GetDimensionsCount | |
/** \deprecated use GetShape() returning std::vector | |
* [[deprecated]] | |
* This interface is unsafe to use | |
*/ | |
[[deprecated("use GetShape()")]] void GetDimensions(int64_t* values, size_t values_count) const; ///< Wraps OrtApi::GetDimensions | |
void GetSymbolicDimensions(const char** values, size_t values_count) const; ///< Wraps OrtApi::GetSymbolicDimensions | |
std::vector<int64_t> GetShape() const; ///< Uses GetDimensionsCount & GetDimensions to return a std::vector of the shape | |
}; | |
} // namespace detail | |
using ConstTensorTypeAndShapeInfo = detail::TensorTypeAndShapeInfoImpl<detail::Unowned<const OrtTensorTypeAndShapeInfo>>; | |
/** \brief Wrapper around ::OrtTensorTypeAndShapeInfo | |
* | |
*/ | |
struct TensorTypeAndShapeInfo : detail::TensorTypeAndShapeInfoImpl<OrtTensorTypeAndShapeInfo> { | |
explicit TensorTypeAndShapeInfo(std::nullptr_t) {} ///< Create an empty TensorTypeAndShapeInfo object, must be assigned a valid one to be used | |
explicit TensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* p) : TensorTypeAndShapeInfoImpl{p} {} ///< Used for interop with the C API | |
ConstTensorTypeAndShapeInfo GetConst() const { return ConstTensorTypeAndShapeInfo{this->p_}; } | |
}; | |
namespace detail { | |
template <typename T> | |
struct SequenceTypeInfoImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
TypeInfo GetSequenceElementType() const; ///< Wraps OrtApi::GetSequenceElementType | |
}; | |
} // namespace detail | |
using ConstSequenceTypeInfo = detail::SequenceTypeInfoImpl<detail::Unowned<const OrtSequenceTypeInfo>>; | |
/** \brief Wrapper around ::OrtSequenceTypeInfo | |
* | |
*/ | |
struct SequenceTypeInfo : detail::SequenceTypeInfoImpl<OrtSequenceTypeInfo> { | |
explicit SequenceTypeInfo(std::nullptr_t) {} ///< Create an empty SequenceTypeInfo object, must be assigned a valid one to be used | |
explicit SequenceTypeInfo(OrtSequenceTypeInfo* p) : SequenceTypeInfoImpl<OrtSequenceTypeInfo>{p} {} ///< Used for interop with the C API | |
ConstSequenceTypeInfo GetConst() const { return ConstSequenceTypeInfo{this->p_}; } | |
}; | |
namespace detail { | |
template <typename T> | |
struct OptionalTypeInfoImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
TypeInfo GetOptionalElementType() const; ///< Wraps OrtApi::CastOptionalTypeToContainedTypeInfo | |
}; | |
} // namespace detail | |
// This is always owned by the TypeInfo and can only be obtained from it. | |
using ConstOptionalTypeInfo = detail::OptionalTypeInfoImpl<detail::Unowned<const OrtOptionalTypeInfo>>; | |
namespace detail { | |
template <typename T> | |
struct MapTypeInfoImpl : detail::Base<T> { | |
using B = Base<T>; | |
using B::B; | |
ONNXTensorElementDataType GetMapKeyType() const; ///< Wraps OrtApi::GetMapKeyType | |
TypeInfo GetMapValueType() const; ///< Wraps OrtApi::GetMapValueType | |
}; | |
} // namespace detail | |
using ConstMapTypeInfo = detail::MapTypeInfoImpl<detail::Unowned<const OrtMapTypeInfo>>; | |
/** \brief Wrapper around ::OrtMapTypeInfo | |
* | |
*/ | |
struct MapTypeInfo : detail::MapTypeInfoImpl<OrtMapTypeInfo> { | |
explicit MapTypeInfo(std::nullptr_t) {} ///< Create an empty MapTypeInfo object, must be assigned a valid one to be used | |
explicit MapTypeInfo(OrtMapTypeInfo* p) : MapTypeInfoImpl<OrtMapTypeInfo>{p} {} ///< Used for interop with the C API | |
ConstMapTypeInfo GetConst() const { return ConstMapTypeInfo{this->p_}; } | |
}; | |
namespace detail { | |
template <typename T> | |
struct TypeInfoImpl : detail::Base<T> { | |
using B = Base<T>; | |
using B::B; | |
ConstTensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const; ///< Wraps OrtApi::CastTypeInfoToTensorInfo | |
ConstSequenceTypeInfo GetSequenceTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToSequenceTypeInfo | |
ConstMapTypeInfo GetMapTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToMapTypeInfo | |
ConstOptionalTypeInfo GetOptionalTypeInfo() const; ///< wraps OrtApi::CastTypeInfoToOptionalTypeInfo | |
ONNXType GetONNXType() const; | |
}; | |
} // namespace detail | |
/// <summary> | |
/// Contains a constant, unowned OrtTypeInfo that can be copied and passed around by value. | |
/// Provides access to const OrtTypeInfo APIs. | |
/// </summary> | |
using ConstTypeInfo = detail::TypeInfoImpl<detail::Unowned<const OrtTypeInfo>>; | |
/// <summary> | |
/// Type information that may contain either TensorTypeAndShapeInfo or | |
/// the information about contained sequence or map depending on the ONNXType. | |
/// </summary> | |
struct TypeInfo : detail::TypeInfoImpl<OrtTypeInfo> { | |
explicit TypeInfo(std::nullptr_t) {} ///< Create an empty TypeInfo object, must be assigned a valid one to be used | |
explicit TypeInfo(OrtTypeInfo* p) : TypeInfoImpl<OrtTypeInfo>{p} {} ///< C API Interop | |
ConstTypeInfo GetConst() const { return ConstTypeInfo{this->p_}; } | |
}; | |
namespace detail { | |
// This structure is used to feed sparse tensor values | |
// information for use with FillSparseTensor<Format>() API | |
// if the data type for the sparse tensor values is numeric | |
// use data.p_data, otherwise, use data.str pointer to feed | |
// values. data.str is an array of const char* that are zero terminated. | |
// number of strings in the array must match shape size. | |
// For fully sparse tensors use shape {0} and set p_data/str | |
// to nullptr. | |
struct OrtSparseValuesParam { | |
const int64_t* values_shape; | |
size_t values_shape_len; | |
union { | |
const void* p_data; | |
const char** str; | |
} data; | |
}; | |
// Provides a way to pass shape in a single | |
// argument | |
struct Shape { | |
const int64_t* shape; | |
size_t shape_len; | |
}; | |
template <typename T> | |
struct ConstValueImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
/// <summary> | |
/// Obtains a pointer to a user defined data for experimental purposes | |
/// </summary> | |
template <typename R> | |
void GetOpaqueData(const char* domain, const char* type_name, R&) const; ///< Wraps OrtApi::GetOpaqueValue | |
bool IsTensor() const; ///< Returns true if Value is a tensor, false for other types like map/sequence/etc | |
bool HasValue() const; /// < Return true if OrtValue contains data and returns false if the OrtValue is a None | |
size_t GetCount() const; // If a non tensor, returns 2 for map and N for sequence, where N is the number of elements | |
Value GetValue(int index, OrtAllocator* allocator) const; | |
/// <summary> | |
/// This API returns a full length of string data contained within either a tensor or a sparse Tensor. | |
/// For sparse tensor it returns a full length of stored non-empty strings (values). The API is useful | |
/// for allocating necessary memory and calling GetStringTensorContent(). | |
/// </summary> | |
/// <returns>total length of UTF-8 encoded bytes contained. No zero terminators counted.</returns> | |
size_t GetStringTensorDataLength() const; | |
/// <summary> | |
/// The API copies all of the UTF-8 encoded string data contained within a tensor or a sparse tensor | |
/// into a supplied buffer. Use GetStringTensorDataLength() to find out the length of the buffer to allocate. | |
/// The user must also allocate offsets buffer with the number of entries equal to that of the contained | |
/// strings. | |
/// | |
/// Strings are always assumed to be on CPU, no X-device copy. | |
/// </summary> | |
/// <param name="buffer">user allocated buffer</param> | |
/// <param name="buffer_length">length in bytes of the allocated buffer</param> | |
/// <param name="offsets">a pointer to the offsets user allocated buffer</param> | |
/// <param name="offsets_count">count of offsets, must be equal to the number of strings contained. | |
/// that can be obtained from the shape of the tensor or from GetSparseTensorValuesTypeAndShapeInfo() | |
/// for sparse tensors</param> | |
void GetStringTensorContent(void* buffer, size_t buffer_length, size_t* offsets, size_t offsets_count) const; | |
/// <summary> | |
/// Returns a const typed pointer to the tensor contained data. | |
/// No type checking is performed, the caller must ensure the type matches the tensor type. | |
/// </summary> | |
/// <typeparam name="T"></typeparam> | |
/// <returns>const pointer to data, no copies made</returns> | |
template <typename R> | |
const R* GetTensorData() const; ///< Wraps OrtApi::GetTensorMutableData /// <summary> | |
/// <summary> | |
/// Returns a non-typed pointer to a tensor contained data. | |
/// </summary> | |
/// <returns>const pointer to data, no copies made</returns> | |
const void* GetTensorRawData() const; | |
/// <summary> | |
/// The API returns type information for data contained in a tensor. For sparse | |
/// tensors it returns type information for contained non-zero values. | |
/// It returns dense shape for sparse tensors. | |
/// </summary> | |
/// <returns>TypeInfo</returns> | |
TypeInfo GetTypeInfo() const; | |
/// <summary> | |
/// The API returns type information for data contained in a tensor. For sparse | |
/// tensors it returns type information for contained non-zero values. | |
/// It returns dense shape for sparse tensors. | |
/// </summary> | |
/// <returns>TensorTypeAndShapeInfo</returns> | |
TensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const; | |
/// <summary> | |
/// This API returns information about the memory allocation used to hold data. | |
/// </summary> | |
/// <returns>Non owning instance of MemoryInfo</returns> | |
ConstMemoryInfo GetTensorMemoryInfo() const; | |
/// <summary> | |
/// The API copies UTF-8 encoded bytes for the requested string element | |
/// contained within a tensor or a sparse tensor into a provided buffer. | |
/// Use GetStringTensorElementLength() to obtain the length of the buffer to allocate. | |
/// </summary> | |
/// <param name="buffer_length"></param> | |
/// <param name="element_index"></param> | |
/// <param name="buffer"></param> | |
void GetStringTensorElement(size_t buffer_length, size_t element_index, void* buffer) const; | |
/// <summary> | |
/// Returns string tensor UTF-8 encoded string element. | |
/// Use of this API is recommended over GetStringTensorElement() that takes void* buffer pointer. | |
/// </summary> | |
/// <param name="element_index"></param> | |
/// <returns>std::string</returns> | |
std::string GetStringTensorElement(size_t element_index) const; | |
/// <summary> | |
/// The API returns a byte length of UTF-8 encoded string element | |
/// contained in either a tensor or a spare tensor values. | |
/// </summary> | |
/// <param name="element_index"></param> | |
/// <returns>byte length for the specified string element</returns> | |
size_t GetStringTensorElementLength(size_t element_index) const; | |
/// <summary> | |
/// The API returns the sparse data format this OrtValue holds in a sparse tensor. | |
/// If the sparse tensor was not fully constructed, i.e. Use*() or Fill*() API were not used | |
/// the value returned is ORT_SPARSE_UNDEFINED. | |
/// </summary> | |
/// <returns>Format enum</returns> | |
OrtSparseFormat GetSparseFormat() const; | |
/// <summary> | |
/// The API returns type and shape information for stored non-zero values of the | |
/// sparse tensor. Use GetSparseTensorValues() to obtain values buffer pointer. | |
/// </summary> | |
/// <returns>TensorTypeAndShapeInfo values information</returns> | |
TensorTypeAndShapeInfo GetSparseTensorValuesTypeAndShapeInfo() const; | |
/// <summary> | |
/// The API returns type and shape information for the specified indices. Each supported | |
/// indices have their own enum values even if a give format has more than one kind of indices. | |
/// Use GetSparseTensorIndicesData() to obtain pointer to indices buffer. | |
/// </summary> | |
/// <param name="format">enum requested</param> | |
/// <returns>type and shape information</returns> | |
TensorTypeAndShapeInfo GetSparseTensorIndicesTypeShapeInfo(OrtSparseIndicesFormat format) const; | |
/// <summary> | |
/// The API retrieves a pointer to the internal indices buffer. The API merely performs | |
/// a convenience data type casting on the return type pointer. Make sure you are requesting | |
/// the right type, use GetSparseTensorIndicesTypeShapeInfo(); | |
/// </summary> | |
/// <typeparam name="T">type to cast to</typeparam> | |
/// <param name="indices_format">requested indices kind</param> | |
/// <param name="num_indices">number of indices entries</param> | |
/// <returns>Pinter to the internal sparse tensor buffer containing indices. Do not free this pointer.</returns> | |
template <typename R> | |
const R* GetSparseTensorIndicesData(OrtSparseIndicesFormat indices_format, size_t& num_indices) const; | |
/// <summary> | |
/// Returns true if the OrtValue contains a sparse tensor | |
/// </summary> | |
/// <returns></returns> | |
bool IsSparseTensor() const; | |
/// <summary> | |
/// The API returns a pointer to an internal buffer of the sparse tensor | |
/// containing non-zero values. The API merely does casting. Make sure you | |
/// are requesting the right data type by calling GetSparseTensorValuesTypeAndShapeInfo() | |
/// first. | |
/// </summary> | |
/// <typeparam name="T">numeric data types only. Use GetStringTensor*() to retrieve strings.</typeparam> | |
/// <returns>a pointer to the internal values buffer. Do not free this pointer.</returns> | |
template <typename R> | |
const R* GetSparseTensorValues() const; | |
}; | |
template <typename T> | |
struct ValueImpl : ConstValueImpl<T> { | |
using B = ConstValueImpl<T>; | |
using B::B; | |
/// <summary> | |
/// Returns a non-const typed pointer to an OrtValue/Tensor contained buffer | |
/// No type checking is performed, the caller must ensure the type matches the tensor type. | |
/// </summary> | |
/// <returns>non-const pointer to data, no copies made</returns> | |
template <typename R> | |
R* GetTensorMutableData(); | |
/// <summary> | |
/// Returns a non-typed non-const pointer to a tensor contained data. | |
/// </summary> | |
/// <returns>pointer to data, no copies made</returns> | |
void* GetTensorMutableRawData(); | |
/// <summary> | |
// Obtain a reference to an element of data at the location specified | |
/// by the vector of dims. | |
/// </summary> | |
/// <typeparam name="R"></typeparam> | |
/// <param name="location">[in] expressed by a vecotr of dimensions offsets</param> | |
/// <returns></returns> | |
template <typename R> | |
R& At(const std::vector<int64_t>& location); | |
/// <summary> | |
/// Set all strings at once in a string tensor | |
/// </summary> | |
/// <param name="s">[in] An array of strings. Each string in this array must be null terminated.</param> | |
/// <param name="s_len">[in] Count of strings in s (Must match the size of \p value's tensor shape)</param> | |
void FillStringTensor(const char* const* s, size_t s_len); | |
/// <summary> | |
/// Set a single string in a string tensor | |
/// </summary> | |
/// <param name="s">[in] A null terminated UTF-8 encoded string</param> | |
/// <param name="index">[in] Index of the string in the tensor to set</param> | |
void FillStringTensorElement(const char* s, size_t index); | |
/// <summary> | |
/// Allocate if necessary and obtain a pointer to a UTF-8 | |
/// encoded string element buffer indexed by the flat element index, | |
/// of the specified length. | |
/// | |
/// This API is for advanced usage. It avoids a need to construct | |
/// an auxiliary array of string pointers, and allows to write data directly | |
/// (do not zero terminate). | |
/// </summary> | |
/// <param name="index"></param> | |
/// <param name="buffer_length"></param> | |
/// <returns>a pointer to a writable buffer</returns> | |
char* GetResizedStringTensorElementBuffer(size_t index, size_t buffer_length); | |
/// <summary> | |
/// Supplies COO format specific indices and marks the contained sparse tensor as being a COO format tensor. | |
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user | |
/// allocated buffers lifespan must eclipse that of the OrtValue. | |
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time. | |
/// </summary> | |
/// <param name="indices_data">pointer to the user allocated buffer with indices. Use nullptr for fully sparse tensors.</param> | |
/// <param name="indices_num">number of indices entries. Use 0 for fully sparse tensors</param> | |
void UseCooIndices(int64_t* indices_data, size_t indices_num); | |
/// <summary> | |
/// Supplies CSR format specific indices and marks the contained sparse tensor as being a CSR format tensor. | |
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user | |
/// allocated buffers lifespan must eclipse that of the OrtValue. | |
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time. | |
/// </summary> | |
/// <param name="inner_data">pointer to the user allocated buffer with inner indices or nullptr for fully sparse tensors</param> | |
/// <param name="inner_num">number of csr inner indices or 0 for fully sparse tensors</param> | |
/// <param name="outer_data">pointer to the user allocated buffer with outer indices or nullptr for fully sparse tensors</param> | |
/// <param name="outer_num">number of csr outer indices or 0 for fully sparse tensors</param> | |
void UseCsrIndices(int64_t* inner_data, size_t inner_num, int64_t* outer_data, size_t outer_num); | |
/// <summary> | |
/// Supplies BlockSparse format specific indices and marks the contained sparse tensor as being a BlockSparse format tensor. | |
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user | |
/// allocated buffers lifespan must eclipse that of the OrtValue. | |
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time. | |
/// </summary> | |
/// <param name="indices_shape">indices shape or a {0} for fully sparse</param> | |
/// <param name="indices_data">user allocated buffer with indices or nullptr for fully spare tensors</param> | |
void UseBlockSparseIndices(const Shape& indices_shape, int32_t* indices_data); | |
/// <summary> | |
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API | |
/// and copy the values and COO indices into it. If data_mem_info specifies that the data is located | |
/// at difference device than the allocator, a X-device copy will be performed if possible. | |
/// </summary> | |
/// <param name="data_mem_info">specified buffer memory description</param> | |
/// <param name="values_param">values buffer information.</param> | |
/// <param name="indices_data">coo indices buffer or nullptr for fully sparse data</param> | |
/// <param name="indices_num">number of COO indices or 0 for fully sparse data</param> | |
void FillSparseTensorCoo(const OrtMemoryInfo* data_mem_info, const OrtSparseValuesParam& values_param, | |
const int64_t* indices_data, size_t indices_num); | |
/// <summary> | |
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API | |
/// and copy the values and CSR indices into it. If data_mem_info specifies that the data is located | |
/// at difference device than the allocator, a X-device copy will be performed if possible. | |
/// </summary> | |
/// <param name="data_mem_info">specified buffer memory description</param> | |
/// <param name="values">values buffer information</param> | |
/// <param name="inner_indices_data">csr inner indices pointer or nullptr for fully sparse tensors</param> | |
/// <param name="inner_indices_num">number of csr inner indices or 0 for fully sparse tensors</param> | |
/// <param name="outer_indices_data">pointer to csr indices data or nullptr for fully sparse tensors</param> | |
/// <param name="outer_indices_num">number of csr outer indices or 0</param> | |
void FillSparseTensorCsr(const OrtMemoryInfo* data_mem_info, | |
const OrtSparseValuesParam& values, | |
const int64_t* inner_indices_data, size_t inner_indices_num, | |
const int64_t* outer_indices_data, size_t outer_indices_num); | |
/// <summary> | |
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API | |
/// and copy the values and BlockSparse indices into it. If data_mem_info specifies that the data is located | |
/// at difference device than the allocator, a X-device copy will be performed if possible. | |
/// </summary> | |
/// <param name="data_mem_info">specified buffer memory description</param> | |
/// <param name="values">values buffer information</param> | |
/// <param name="indices_shape">indices shape. use {0} for fully sparse tensors</param> | |
/// <param name="indices_data">pointer to indices data or nullptr for fully sparse tensors</param> | |
void FillSparseTensorBlockSparse(const OrtMemoryInfo* data_mem_info, | |
const OrtSparseValuesParam& values, | |
const Shape& indices_shape, | |
const int32_t* indices_data); | |
}; | |
} // namespace detail | |
using ConstValue = detail::ConstValueImpl<detail::Unowned<const OrtValue>>; | |
using UnownedValue = detail::ValueImpl<detail::Unowned<OrtValue>>; | |
/** \brief Wrapper around ::OrtValue | |
* | |
*/ | |
struct Value : detail::ValueImpl<OrtValue> { | |
using Base = detail::ValueImpl<OrtValue>; | |
using OrtSparseValuesParam = detail::OrtSparseValuesParam; | |
using Shape = detail::Shape; | |
explicit Value(std::nullptr_t) {} ///< Create an empty Value object, must be assigned a valid one to be used | |
explicit Value(OrtValue* p) : Base{p} {} ///< Used for interop with the C API | |
Value(Value&&) = default; | |
Value& operator=(Value&&) = default; | |
ConstValue GetConst() const { return ConstValue{this->p_}; } | |
UnownedValue GetUnowned() const { return UnownedValue{this->p_}; } | |
/** \brief Creates a tensor with a user supplied buffer. Wraps OrtApi::CreateTensorWithDataAsOrtValue. | |
* \tparam T The numeric datatype. This API is not suitable for strings. | |
* \param info Memory description of where the p_data buffer resides (CPU vs GPU etc). | |
* \param p_data Pointer to the data buffer. | |
* \param p_data_element_count The number of elements in the data buffer. | |
* \param shape Pointer to the tensor shape dimensions. | |
* \param shape_len The number of tensor shape dimensions. | |
*/ | |
template <typename T> | |
static Value CreateTensor(const OrtMemoryInfo* info, T* p_data, size_t p_data_element_count, const int64_t* shape, size_t shape_len); | |
/** \brief Creates a tensor with a user supplied buffer. Wraps OrtApi::CreateTensorWithDataAsOrtValue. | |
* | |
* \param info Memory description of where the p_data buffer resides (CPU vs GPU etc). | |
* \param p_data Pointer to the data buffer. | |
* \param p_data_byte_count The number of bytes in the data buffer. | |
* \param shape Pointer to the tensor shape dimensions. | |
* \param shape_len The number of tensor shape dimensions. | |
* \param type The data type. | |
*/ | |
static Value CreateTensor(const OrtMemoryInfo* info, void* p_data, size_t p_data_byte_count, const int64_t* shape, size_t shape_len, | |
ONNXTensorElementDataType type); | |
/** \brief Creates an OrtValue with a tensor using a supplied OrtAllocator. Wraps OrtApi::CreateTensorAsOrtValue. | |
* This overload will allocate the buffer for the tensor according to the supplied shape and data type. | |
* The allocated buffer will be owned by the returned OrtValue and will be freed when the OrtValue is released. | |
* The input data would need to be copied into the allocated buffer. | |
* This API is not suitable for strings. | |
* | |
* \tparam T The numeric datatype. This API is not suitable for strings. | |
* \param allocator The allocator to use. | |
* \param shape Pointer to the tensor shape dimensions. | |
* \param shape_len The number of tensor shape dimensions. | |
*/ | |
template <typename T> | |
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len); | |
/** \brief Creates an OrtValue with a tensor using the supplied OrtAllocator. | |
* Wraps OrtApi::CreateTensorAsOrtValue. | |
* The allocated buffer will be owned by the returned OrtValue and will be freed when the OrtValue is released. | |
* The input data would need to be copied into the allocated buffer. | |
* This API is not suitable for strings. | |
* | |
* \param allocator The allocator to use. | |
* \param shape Pointer to the tensor shape dimensions. | |
* \param shape_len The number of tensor shape dimensions. | |
* \param type The data type. | |
*/ | |
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type); | |
/** \brief Creates an OrtValue with a Map Onnx type representation. | |
* The API would ref-count the supplied OrtValues and they will be released | |
* when the returned OrtValue is released. The caller may release keys and values after the call | |
* returns. | |
* | |
* \param keys an OrtValue containing a tensor with primitive data type keys. | |
* \param values an OrtValue that may contain a tensor. Ort currently supports only primitive data type values. | |
*/ | |
static Value CreateMap(const Value& keys, const Value& values); ///< Wraps OrtApi::CreateValue | |
/** \brief Creates an OrtValue with a Sequence Onnx type representation. | |
* The API would ref-count the supplied OrtValues and they will be released | |
* when the returned OrtValue is released. The caller may release the values after the call | |
* returns. | |
* | |
* \param values a vector of OrtValues that must have the same Onnx value type. | |
*/ | |
static Value CreateSequence(const std::vector<Value>& values); ///< Wraps OrtApi::CreateValue | |
/** \brief Creates an OrtValue wrapping an Opaque type. | |
* This is used for experimental support of non-tensor types. | |
* | |
* \tparam T - the type of the value. | |
* \param domain - zero terminated utf-8 string. Domain of the type. | |
* \param type_name - zero terminated utf-8 string. Name of the type. | |
* \param value - the value to be wrapped. | |
*/ | |
template <typename T> | |
static Value CreateOpaque(const char* domain, const char* type_name, const T& value); ///< Wraps OrtApi::CreateOpaqueValue | |
/// <summary> | |
/// This is a simple forwarding method to the other overload that helps deducing | |
/// data type enum value from the type of the buffer. | |
/// </summary> | |
/// <typeparam name="T">numeric datatype. This API is not suitable for strings.</typeparam> | |
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param> | |
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param> | |
/// <param name="dense_shape">a would be dense shape of the tensor</param> | |
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param> | |
/// <returns></returns> | |
template <typename T> | |
static Value CreateSparseTensor(const OrtMemoryInfo* info, T* p_data, const Shape& dense_shape, | |
const Shape& values_shape); | |
/// <summary> | |
/// Creates an OrtValue instance containing SparseTensor. This constructs | |
/// a sparse tensor that makes use of user allocated buffers. It does not make copies | |
/// of the user provided data and does not modify it. The lifespan of user provided buffers should | |
/// eclipse the life span of the resulting OrtValue. This call constructs an instance that only contain | |
/// a pointer to non-zero values. To fully populate the sparse tensor call Use<Format>Indices() API below | |
/// to supply a sparse format specific indices. | |
/// This API is not suitable for string data. Use CreateSparseTensor() with allocator specified so strings | |
/// can be properly copied into the allocated buffer. | |
/// </summary> | |
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param> | |
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param> | |
/// <param name="dense_shape">a would be dense shape of the tensor</param> | |
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param> | |
/// <param name="type">data type</param> | |
/// <returns>Ort::Value instance containing SparseTensor</returns> | |
static Value CreateSparseTensor(const OrtMemoryInfo* info, void* p_data, const Shape& dense_shape, | |
const Shape& values_shape, ONNXTensorElementDataType type); | |
/// <summary> | |
/// This is a simple forwarding method to the below CreateSparseTensor. | |
/// This helps to specify data type enum in terms of C++ data type. | |
/// Use CreateSparseTensor<T> | |
/// </summary> | |
/// <typeparam name="T">numeric data type only. String data enum must be specified explicitly.</typeparam> | |
/// <param name="allocator">allocator to use</param> | |
/// <param name="dense_shape">a would be dense shape of the tensor</param> | |
/// <returns>Ort::Value</returns> | |
template <typename T> | |
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape); | |
/// <summary> | |
/// Creates an instance of OrtValue containing sparse tensor. The created instance has no data. | |
/// The data must be supplied by on of the FillSparseTensor<Format>() methods that take both non-zero values | |
/// and indices. The data will be copied into a buffer that would be allocated using the supplied allocator. | |
/// Use this API to create OrtValues that contain sparse tensors with all supported data types including | |
/// strings. | |
/// </summary> | |
/// <param name="allocator">allocator to use. The allocator lifespan must eclipse that of the resulting OrtValue</param> | |
/// <param name="dense_shape">a would be dense shape of the tensor</param> | |
/// <param name="type">data type</param> | |
/// <returns>an instance of Ort::Value</returns> | |
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape, ONNXTensorElementDataType type); | |
}; | |
/// <summary> | |
/// Represents native memory allocation coming from one of the | |
/// OrtAllocators registered with OnnxRuntime. | |
/// Use it to wrap an allocation made by an allocator | |
/// so it can be automatically released when no longer needed. | |
/// </summary> | |
struct MemoryAllocation { | |
MemoryAllocation(OrtAllocator* allocator, void* p, size_t size); | |
~MemoryAllocation(); | |
MemoryAllocation(const MemoryAllocation&) = delete; | |
MemoryAllocation& operator=(const MemoryAllocation&) = delete; | |
MemoryAllocation(MemoryAllocation&&) noexcept; | |
MemoryAllocation& operator=(MemoryAllocation&&) noexcept; | |
void* get() { return p_; } | |
size_t size() const { return size_; } | |
private: | |
OrtAllocator* allocator_; | |
void* p_; | |
size_t size_; | |
}; | |
namespace detail { | |
template <typename T> | |
struct AllocatorImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
void* Alloc(size_t size); | |
MemoryAllocation GetAllocation(size_t size); | |
void Free(void* p); | |
ConstMemoryInfo GetInfo() const; | |
}; | |
} // namespace detail | |
/** \brief Wrapper around ::OrtAllocator default instance that is owned by Onnxruntime | |
* | |
*/ | |
struct AllocatorWithDefaultOptions : detail::AllocatorImpl<detail::Unowned<OrtAllocator>> { | |
explicit AllocatorWithDefaultOptions(std::nullptr_t) {} ///< Convenience to create a class member and then replace with an instance | |
AllocatorWithDefaultOptions(); | |
}; | |
/** \brief Wrapper around ::OrtAllocator | |
* | |
*/ | |
struct Allocator : detail::AllocatorImpl<OrtAllocator> { | |
explicit Allocator(std::nullptr_t) {} ///< Convenience to create a class member and then replace with an instance | |
Allocator(const Session& session, const OrtMemoryInfo*); | |
}; | |
using UnownedAllocator = detail::AllocatorImpl<detail::Unowned<OrtAllocator>>; | |
namespace detail { | |
namespace binding_utils { | |
// Bring these out of template | |
std::vector<std::string> GetOutputNamesHelper(const OrtIoBinding* binding, OrtAllocator*); | |
std::vector<Value> GetOutputValuesHelper(const OrtIoBinding* binding, OrtAllocator*); | |
} // namespace binding_utils | |
template <typename T> | |
struct ConstIoBindingImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
std::vector<std::string> GetOutputNames() const; | |
std::vector<std::string> GetOutputNames(OrtAllocator*) const; | |
std::vector<Value> GetOutputValues() const; | |
std::vector<Value> GetOutputValues(OrtAllocator*) const; | |
}; | |
template <typename T> | |
struct IoBindingImpl : ConstIoBindingImpl<T> { | |
using B = ConstIoBindingImpl<T>; | |
using B::B; | |
void BindInput(const char* name, const Value&); | |
void BindOutput(const char* name, const Value&); | |
void BindOutput(const char* name, const OrtMemoryInfo*); | |
void ClearBoundInputs(); | |
void ClearBoundOutputs(); | |
void SynchronizeInputs(); | |
void SynchronizeOutputs(); | |
}; | |
} // namespace detail | |
using ConstIoBinding = detail::ConstIoBindingImpl<detail::Unowned<const OrtIoBinding>>; | |
using UnownedIoBinding = detail::IoBindingImpl<detail::Unowned<OrtIoBinding>>; | |
/** \brief Wrapper around ::OrtIoBinding | |
* | |
*/ | |
struct IoBinding : detail::IoBindingImpl<OrtIoBinding> { | |
explicit IoBinding(std::nullptr_t) {} ///< Create an empty object for convenience. Sometimes, we want to initialize members later. | |
explicit IoBinding(Session& session); | |
ConstIoBinding GetConst() const { return ConstIoBinding{this->p_}; } | |
UnownedIoBinding GetUnowned() const { return UnownedIoBinding{this->p_}; } | |
}; | |
/*! \struct Ort::ArenaCfg | |
* \brief it is a structure that represents the configuration of an arena based allocator | |
* \details Please see docs/C_API.md for details | |
*/ | |
struct ArenaCfg : detail::Base<OrtArenaCfg> { | |
explicit ArenaCfg(std::nullptr_t) {} ///< Create an empty ArenaCfg object, must be assigned a valid one to be used | |
/** | |
* Wraps OrtApi::CreateArenaCfg | |
* \param max_mem - use 0 to allow ORT to choose the default | |
* \param arena_extend_strategy - use -1 to allow ORT to choose the default, 0 = kNextPowerOfTwo, 1 = kSameAsRequested | |
* \param initial_chunk_size_bytes - use -1 to allow ORT to choose the default | |
* \param max_dead_bytes_per_chunk - use -1 to allow ORT to choose the default | |
* See docs/C_API.md for details on what the following parameters mean and how to choose these values | |
*/ | |
ArenaCfg(size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes, int max_dead_bytes_per_chunk); | |
}; | |
// | |
// Custom OPs (only needed to implement custom OPs) | |
// | |
/// <summary> | |
/// This struct provides life time management for custom op attribute | |
/// </summary> | |
struct OpAttr : detail::Base<OrtOpAttr> { | |
OpAttr(const char* name, const void* data, int len, OrtOpAttrType type); | |
}; | |
/** | |
* Macro that logs a message using the provided logger. Throws an exception if OrtApi::Logger_LogMessage fails. | |
* Example: ORT_CXX_LOG(logger, ORT_LOGGING_LEVEL_INFO, "Log a message"); | |
* | |
* \param logger The Ort::Logger instance to use. Must be a value or reference. | |
* \param message_severity The logging severity level of the message. | |
* \param message A null-terminated UTF-8 message to log. | |
*/ | |
/** | |
* Macro that logs a message using the provided logger. Can be used in noexcept code since errors are silently ignored. | |
* Example: ORT_CXX_LOG_NOEXCEPT(logger, ORT_LOGGING_LEVEL_INFO, "Log a message"); | |
* | |
* \param logger The Ort::Logger instance to use. Must be a value or reference. | |
* \param message_severity The logging severity level of the message. | |
* \param message A null-terminated UTF-8 message to log. | |
*/ | |
/** | |
* Macro that logs a printf-like formatted message using the provided logger. Throws an exception if | |
* OrtApi::Logger_LogMessage fails or if a formatting error occurs. | |
* Example: ORT_CXX_LOGF(logger, ORT_LOGGING_LEVEL_INFO, "Log an int: %d", 12); | |
* | |
* \param logger The Ort::Logger instance to use. Must be a value or reference. | |
* \param message_severity The logging severity level of the message. | |
* \param format A null-terminated UTF-8 format string forwarded to a printf-like function. | |
* Refer to https://en.cppreference.com/w/cpp/io/c/fprintf for information on valid formats. | |
* \param ... Zero or more variadic arguments referenced by the format string. | |
*/ | |
/** | |
* Macro that logs a printf-like formatted message using the provided logger. Can be used in noexcept code since errors | |
* are silently ignored. | |
* Example: ORT_CXX_LOGF_NOEXCEPT(logger, ORT_LOGGING_LEVEL_INFO, "Log an int: %d", 12); | |
* | |
* \param logger The Ort::Logger instance to use. Must be a value or reference. | |
* \param message_severity The logging severity level of the message. | |
* \param format A null-terminated UTF-8 format string forwarded to a printf-like function. | |
* Refer to https://en.cppreference.com/w/cpp/io/c/fprintf for information on valid formats. | |
* \param ... Zero or more variadic arguments referenced by the format string. | |
*/ | |
/// <summary> | |
/// This class represents an ONNX Runtime logger that can be used to log information with an | |
/// associated severity level and source code location (file path, line number, function name). | |
/// | |
/// A Logger can be obtained from within custom operators by calling Ort::KernelInfo::GetLogger(). | |
/// Instances of Ort::Logger are the size of two pointers and can be passed by value. | |
/// | |
/// Use the ORT_CXX_LOG macros to ensure the source code location is set properly from the callsite | |
/// and to take advantage of a cached logging severity level that can bypass calls to the underlying C API. | |
/// </summary> | |
struct Logger { | |
/** | |
* Creates an empty Ort::Logger. Must be initialized from a valid Ort::Logger before use. | |
*/ | |
Logger() = default; | |
/** | |
* Creates an empty Ort::Logger. Must be initialized from a valid Ort::Logger before use. | |
*/ | |
explicit Logger(std::nullptr_t) {} | |
/** | |
* Creates a logger from an ::OrtLogger instance. Caches the logger's current severity level by calling | |
* OrtApi::Logger_GetLoggingSeverityLevel. Throws an exception if OrtApi::Logger_GetLoggingSeverityLevel fails. | |
* | |
* \param logger The ::OrtLogger to wrap. | |
*/ | |
explicit Logger(const OrtLogger* logger); | |
~Logger() = default; | |
Logger(const Logger&) = default; | |
Logger& operator=(const Logger&) = default; | |
Logger(Logger&& v) noexcept = default; | |
Logger& operator=(Logger&& v) noexcept = default; | |
/** | |
* Returns the logger's current severity level from the cached member. | |
* | |
* \return The current ::OrtLoggingLevel. | |
*/ | |
OrtLoggingLevel GetLoggingSeverityLevel() const noexcept; | |
/** | |
* Logs the provided message via OrtApi::Logger_LogMessage. Use the ORT_CXX_LOG or ORT_CXX_LOG_NOEXCEPT | |
* macros to properly set the source code location and to use the cached severity level to potentially bypass | |
* calls to the underlying C API. | |
* | |
* \param log_severity_level The message's logging severity level. | |
* \param file_path The filepath of the file in which the message is logged. Usually the value of ORT_FILE. | |
* \param line_number The file line number in which the message is logged. Usually the value of __LINE__. | |
* \param func_name The name of the function in which the message is logged. Usually the value of __FUNCTION__. | |
* \param message The message to log. | |
* \return A Ort::Status value to indicate error or success. | |
*/ | |
Status LogMessage(OrtLoggingLevel log_severity_level, const ORTCHAR_T* file_path, int line_number, | |
const char* func_name, const char* message) const noexcept; | |
/** | |
* Logs a printf-like formatted message via OrtApi::Logger_LogMessage. Use the ORT_CXX_LOGF or ORT_CXX_LOGF_NOEXCEPT | |
* macros to properly set the source code location and to use the cached severity level to potentially bypass | |
* calls to the underlying C API. Returns an error status if a formatting error occurs. | |
* | |
* \param log_severity_level The message's logging severity level. | |
* \param file_path The filepath of the file in which the message is logged. Usually the value of ORT_FILE. | |
* \param line_number The file line number in which the message is logged. Usually the value of __LINE__. | |
* \param func_name The name of the function in which the message is logged. Usually the value of __FUNCTION__. | |
* \param format A null-terminated UTF-8 format string forwarded to a printf-like function. | |
* Refer to https://en.cppreference.com/w/cpp/io/c/fprintf for information on valid formats. | |
* \param args Zero or more variadic arguments referenced by the format string. | |
* \return A Ort::Status value to indicate error or success. | |
*/ | |
template <typename... Args> | |
Status LogFormattedMessage(OrtLoggingLevel log_severity_level, const ORTCHAR_T* file_path, int line_number, | |
const char* func_name, const char* format, Args&&... args) const noexcept; | |
private: | |
const OrtLogger* logger_{}; | |
OrtLoggingLevel cached_severity_level_{}; | |
}; | |
/// <summary> | |
/// This class wraps a raw pointer OrtKernelContext* that is being passed | |
/// to the custom kernel Compute() method. Use it to safely access context | |
/// attributes, input and output parameters with exception safety guarantees. | |
/// See usage example in onnxruntime/test/testdata/custom_op_library/custom_op_library.cc | |
/// </summary> | |
struct KernelContext { | |
explicit KernelContext(OrtKernelContext* context); | |
size_t GetInputCount() const; | |
size_t GetOutputCount() const; | |
ConstValue GetInput(size_t index) const; | |
UnownedValue GetOutput(size_t index, const int64_t* dim_values, size_t dim_count) const; | |
UnownedValue GetOutput(size_t index, const std::vector<int64_t>& dims) const; | |
void* GetGPUComputeStream() const; | |
Logger GetLogger() const; | |
OrtAllocator* GetAllocator(const OrtMemoryInfo& memory_info) const; | |
private: | |
OrtKernelContext* ctx_; | |
}; | |
struct KernelInfo; | |
namespace detail { | |
namespace attr_utils { | |
void GetAttr(const OrtKernelInfo* p, const char* name, float&); | |
void GetAttr(const OrtKernelInfo* p, const char* name, int64_t&); | |
void GetAttr(const OrtKernelInfo* p, const char* name, std::string&); | |
void GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<float>&); | |
void GetAttrs(const OrtKernelInfo* p, const char* name, std::vector<int64_t>&); | |
} // namespace attr_utils | |
template <typename T> | |
struct KernelInfoImpl : Base<T> { | |
using B = Base<T>; | |
using B::B; | |
KernelInfo Copy() const; | |
template <typename R> // R is only implemented for float, int64_t, and string | |
R GetAttribute(const char* name) const { | |
R val; | |
attr_utils::GetAttr(this->p_, name, val); | |
return val; | |
} | |
template <typename R> // R is only implemented for std::vector<float>, std::vector<int64_t> | |
std::vector<R> GetAttributes(const char* name) const { | |
std::vector<R> result; | |
attr_utils::GetAttrs(this->p_, name, result); | |
return result; | |
} | |
Value GetTensorAttribute(const char* name, OrtAllocator* allocator) const; | |
size_t GetInputCount() const; | |
size_t GetOutputCount() const; | |
std::string GetInputName(size_t index) const; | |
std::string GetOutputName(size_t index) const; | |
TypeInfo GetInputTypeInfo(size_t index) const; | |
TypeInfo GetOutputTypeInfo(size_t index) const; | |
ConstValue GetTensorConstantInput(size_t index, int* is_constant) const; | |
std::string GetNodeName() const; | |
Logger GetLogger() const; | |
}; | |
} // namespace detail | |
using ConstKernelInfo = detail::KernelInfoImpl<detail::Unowned<const OrtKernelInfo>>; | |
/// <summary> | |
/// This struct owns the OrtKernInfo* pointer when a copy is made. | |
/// For convenient wrapping of OrtKernelInfo* passed to kernel constructor | |
/// and query attributes, warp the pointer with Ort::Unowned<KernelInfo> instance | |
/// so it does not destroy the pointer the kernel does not own. | |
/// </summary> | |
struct KernelInfo : detail::KernelInfoImpl<OrtKernelInfo> { | |
explicit KernelInfo(std::nullptr_t) {} ///< Create an empty instance to initialize later | |
explicit KernelInfo(OrtKernelInfo* info); ///< Take ownership of the instance | |
ConstKernelInfo GetConst() const { return ConstKernelInfo{this->p_}; } | |
}; | |
/// <summary> | |
/// Create and own custom defined operation. | |
/// </summary> | |
struct Op : detail::Base<OrtOp> { | |
explicit Op(std::nullptr_t) {} ///< Create an empty Operator object, must be assigned a valid one to be used | |
explicit Op(OrtOp*); ///< Take ownership of the OrtOp | |
static Op Create(const OrtKernelInfo* info, const char* op_name, const char* domain, | |
int version, const char** type_constraint_names, | |
const ONNXTensorElementDataType* type_constraint_values, | |
size_t type_constraint_count, | |
const OpAttr* attr_values, | |
size_t attr_count, | |
size_t input_count, size_t output_count); | |
void Invoke(const OrtKernelContext* context, | |
const Value* input_values, | |
size_t input_count, | |
Value* output_values, | |
size_t output_count); | |
// For easier refactoring | |
void Invoke(const OrtKernelContext* context, | |
const OrtValue* const* input_values, | |
size_t input_count, | |
OrtValue* const* output_values, | |
size_t output_count); | |
}; | |
template <typename TOp, typename TKernel, bool WithStatus = false> | |
struct CustomOpBase : OrtCustomOp { | |
CustomOpBase() { | |
OrtCustomOp::version = ORT_API_VERSION; | |
OrtCustomOp::GetName = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetName(); }; | |
OrtCustomOp::GetExecutionProviderType = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetExecutionProviderType(); }; | |
OrtCustomOp::GetInputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetInputTypeCount(); }; | |
OrtCustomOp::GetInputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputType(index); }; | |
OrtCustomOp::GetInputMemoryType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputMemoryType(index); }; | |
OrtCustomOp::GetOutputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetOutputTypeCount(); }; | |
OrtCustomOp::GetOutputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputType(index); }; | |
OrtCustomOp::KernelDestroy = [](void* op_kernel) { delete static_cast<TKernel*>(op_kernel); }; | |
OrtCustomOp::GetInputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputCharacteristic(index); }; | |
OrtCustomOp::GetOutputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputCharacteristic(index); }; | |
OrtCustomOp::GetVariadicInputMinArity = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetVariadicInputMinArity(); }; | |
OrtCustomOp::GetVariadicInputHomogeneity = [](const OrtCustomOp* this_) { return static_cast<int>(static_cast<const TOp*>(this_)->GetVariadicInputHomogeneity()); }; | |
OrtCustomOp::GetVariadicOutputMinArity = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetVariadicOutputMinArity(); }; | |
OrtCustomOp::GetVariadicOutputHomogeneity = [](const OrtCustomOp* this_) { return static_cast<int>(static_cast<const TOp*>(this_)->GetVariadicOutputHomogeneity()); }; | |
if constexpr (WithStatus) { | |
if (WithStatus) { | |
OrtCustomOp::CreateKernelV2 = [](const OrtCustomOp* this_, const OrtApi* api, const OrtKernelInfo* info, void** op_kernel) -> OrtStatusPtr { | |
return static_cast<const TOp*>(this_)->CreateKernelV2(*api, info, op_kernel); | |
}; | |
OrtCustomOp::KernelComputeV2 = [](void* op_kernel, OrtKernelContext* context) -> OrtStatusPtr { | |
return static_cast<TKernel*>(op_kernel)->ComputeV2(context); | |
}; | |
} else { | |
OrtCustomOp::CreateKernelV2 = nullptr; | |
OrtCustomOp::KernelComputeV2 = nullptr; | |
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* api, const OrtKernelInfo* info) { return static_cast<const TOp*>(this_)->CreateKernel(*api, info); }; | |
OrtCustomOp::KernelCompute = [](void* op_kernel, OrtKernelContext* context) { | |
static_cast<TKernel*>(op_kernel)->Compute(context); | |
}; | |
} | |
} | |
// Default implementation of GetExecutionProviderType that returns nullptr to default to the CPU provider | |
const char* GetExecutionProviderType() const { return nullptr; } | |
// Default implementations of GetInputCharacteristic() and GetOutputCharacteristic() below | |
// (inputs and outputs are required by default) | |
OrtCustomOpInputOutputCharacteristic GetInputCharacteristic(size_t /*index*/) const { | |
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED; | |
} | |
OrtCustomOpInputOutputCharacteristic GetOutputCharacteristic(size_t /*index*/) const { | |
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED; | |
} | |
// Default implemention of GetInputMemoryType() that returns OrtMemTypeDefault | |
OrtMemType GetInputMemoryType(size_t /*index*/) const { | |
return OrtMemTypeDefault; | |
} | |
// Default implementation of GetVariadicInputMinArity() returns 1 to specify that a variadic input | |
// should expect at least 1 argument. | |
int GetVariadicInputMinArity() const { | |
return 1; | |
} | |
// Default implementation of GetVariadicInputHomegeneity() returns true to specify that all arguments | |
// to a variadic input should be of the same type. | |
bool GetVariadicInputHomogeneity() const { | |
return true; | |
} | |
// Default implementation of GetVariadicOutputMinArity() returns 1 to specify that a variadic output | |
// should produce at least 1 output value. | |
int GetVariadicOutputMinArity() const { | |
return 1; | |
} | |
// Default implementation of GetVariadicOutputHomegeneity() returns true to specify that all output values | |
// produced by a variadic output should be of the same type. | |
bool GetVariadicOutputHomogeneity() const { | |
return true; | |
} | |
// Declare list of session config entries used by this Custom Op. | |
// Implement this function in order to get configs from CustomOpBase::GetSessionConfigs(). | |
// This default implementation returns an empty vector of config entries. | |
std::vector<std::string> GetSessionConfigKeys() const { | |
return std::vector<std::string>{}; | |
} | |
protected: | |
// Helper function that returns a map of session config entries specified by CustomOpBase::GetSessionConfigKeys. | |
void GetSessionConfigs(std::unordered_map<std::string, std::string>& out, ConstSessionOptions options) const; | |
}; | |
} // namespace Ort | |