metadata
base_model:
- cstr/llama3.1-8b-spaetzle-v85
- cstr/llama3.1-8b-spaetzle-v86
- cstr/llama3.1-8b-spaetzle-v74
tags:
- merge
- mergekit
- lazymergekit
- cstr/llama3.1-8b-spaetzle-v85
- cstr/llama3.1-8b-spaetzle-v86
- cstr/llama3.1-8b-spaetzle-v74
license: llama3
language:
- en
- de
llama3.1-8b-spaetzle-v90
llama3.1-8b-spaetzle-v90 is a progressive merge of merges.
EQ-Bench v2_de: 69.93 (171/171).
🧩 Configuration
models:
- model: cstr/llama3.1-8b-spaetzle-v59
# no parameters necessary for base model
- model: cstr/llama3.1-8b-spaetzle-v85
parameters:
density: 0.65
weight: 0.3
- model: cstr/llama3.1-8b-spaetzle-v86
parameters:
density: 0.65
weight: 0.3
- model: cstr/llama3.1-8b-spaetzle-v74
parameters:
density: 0.65
weight: 0.3
merge_method: dare_ties
base_model: cstr/llama3.1-8b-spaetzle-v59
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/llama3.1-8b-spaetzle-v90"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])