csikasote's picture
Update README.md
7f8f737
|
raw
history blame
4.16 kB
metadata
language: bem
datasets:
  - BembaSpeech
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: XLSR Wav2Vec2 Bemba by Claytone Sikasote
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BembaSpeech bem
          type: bembaspeech
          args: bem
        metrics:
          - name: Test WER
            type: wer
            value: 42.17

Wav2Vec2-Large-XLSR-53-Bemba

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Bemba language of Zambia using the BembaSpeech. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\t")["test"] # Adapt the path to test.csv

processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") 
model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") 

#BembaSpeech is sample at 16kHz so we you do not need to resample
#resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = speech_array.squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
     logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Bemba test data of BembaSpeech.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter="\\t")["test"] 
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") 
model = Wav2Vec2ForCTC.from_pretrained("csikasote/wav2vec2-large-xlsr-bemba") 
model.to("cuda")

chars_to_ignore_regex = '[\,\_\?\.\!\;\:\"\“]'  
#resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = speech_array.squeeze().numpy() 
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 42.17 %

Training

The BembaSpeech train, dev and test datasets were used for training, development and evaluation respectively. The script used for evaluating the model on the test dataset can be found here.