librarian-bot's picture
Librarian Bot: Add base_model information to model
3313dfb
|
raw
history blame
2.27 kB
---
license: apache-2.0
tags:
- generated_from_trainer
- bem
- robust-speech-event
base_model: facebook/wav2vec2-xls-r-300m
model-index:
- name: wav2vec2-large-xls-r-300m-bemba-fds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-bemba-fds
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [BembaSpeech](https://github.com/csikasote/BembaSpeech) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3594
- Wer: 0.3838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9961 | 0.67 | 500 | 0.5157 | 0.7133 |
| 0.5903 | 1.34 | 1000 | 0.3663 | 0.4989 |
| 0.4804 | 2.02 | 1500 | 0.3547 | 0.4653 |
| 0.4146 | 2.69 | 2000 | 0.3274 | 0.4345 |
| 0.3792 | 3.36 | 2500 | 0.3586 | 0.4640 |
| 0.3509 | 4.03 | 3000 | 0.3360 | 0.4316 |
| 0.3114 | 4.7 | 3500 | 0.3382 | 0.4303 |
| 0.2935 | 5.38 | 4000 | 0.3263 | 0.4091 |
| 0.2723 | 6.05 | 4500 | 0.3348 | 0.4175 |
| 0.2502 | 6.72 | 5000 | 0.3317 | 0.4147 |
| 0.2334 | 7.39 | 5500 | 0.3542 | 0.4030 |
| 0.2287 | 8.06 | 6000 | 0.3594 | 0.4067 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3