|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- multi_news |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: multi-news-diff-weight |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: multi_news |
|
type: multi_news |
|
config: default |
|
split: train[:20%] |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 9.9082 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multi-news-diff-weight |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the multi_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5350 |
|
- Rouge1: 9.9082 |
|
- Rouge2: 3.6995 |
|
- Rougel: 7.6135 |
|
- Rougelsum: 9.0176 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.8555 | 1.0 | 4047 | 2.5846 | 9.7797 | 3.6212 | 7.5597 | 8.9387 | |
|
| 2.5262 | 2.0 | 8094 | 2.5231 | 9.7969 | 3.5968 | 7.5592 | 8.9532 | |
|
| 2.3195 | 3.0 | 12141 | 2.5149 | 9.83 | 3.6338 | 7.5109 | 8.9725 | |
|
| 2.1655 | 4.0 | 16188 | 2.5188 | 9.8704 | 3.6936 | 7.6094 | 9.0336 | |
|
| 2.055 | 5.0 | 20235 | 2.5350 | 9.9082 | 3.6995 | 7.6135 | 9.0176 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|