crystal-technologies's picture
Upload 1287 files
2d8da09
raw
history blame
13.3 kB
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import random
import shutil
import urllib.request
from pathlib import Path
import pandas as pd
from joblib import Parallel, delayed
from tqdm import tqdm
try:
from nemo_text_processing.text_normalization.normalize import Normalizer
except (ImportError, ModuleNotFoundError):
raise ModuleNotFoundError(
"The package `nemo_text_processing` was not installed in this environment. Please refer to"
" https://github.com/NVIDIA/NeMo-text-processing and install this package before using "
"this script"
)
from nemo.utils import logging
# full corpus.
URLS_FULL = {
"Bernd_Ungerer": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Bernd_Ungerer.zip",
"Eva_K": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Eva_K.zip",
"Friedrich": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Friedrich.zip",
"Hokuspokus": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Hokuspokus.zip",
"Karlsson": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/Karlsson.zip",
"others": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_full/others.zip",
}
URL_STATS_FULL = "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/datasetStatistic.zip"
# the clean subset of the full corpus.
URLS_CLEAN = {
"Bernd_Ungerer": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Bernd_Ungerer_Clean.zip",
"Eva_K": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Eva_K_Clean.zip",
"Friedrich": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Friedrich_Clean.zip",
"Hokuspokus": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Hokuspokus_Clean.zip",
"Karlsson": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/Karlsson_Clean.zip",
"others": "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/dataset_clean/others_Clean.zip",
}
URL_STATS_CLEAN = "https://opendata.iisys.de/opendata/Datasets/HUI-Audio-Corpus-German/datasetStatisticClean.zip"
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Download HUI-Audio-Corpus-German and create manifests with predefined split. "
"Please check details about the corpus in https://github.com/iisys-hof/HUI-Audio-Corpus-German.",
)
parser.add_argument("--data-root", required=True, type=Path, help="where the resulting dataset will reside.")
parser.add_argument("--manifests-root", required=True, type=Path, help="where the manifests files will reside.")
parser.add_argument("--set-type", default="clean", choices=["full", "clean"], type=str)
parser.add_argument("--min-duration", default=0.1, type=float)
parser.add_argument("--max-duration", default=15, type=float)
parser.add_argument(
"--num-workers",
default=-1,
type=int,
help="Specify the max number of concurrently Python workers processes. "
"If -1 all CPUs are used. If 1 no parallel computing is used.",
)
parser.add_argument(
"--normalize-text",
default=False,
action='store_true',
help="Normalize original text and add a new entry 'normalized_text' to .json file if True.",
)
parser.add_argument(
"--val-num-utts-per-speaker",
default=1,
type=int,
help="Specify the number of utterances for each speaker in val split. All speakers are covered.",
)
parser.add_argument(
"--test-num-utts-per-speaker",
default=1,
type=int,
help="Specify the number of utterances for each speaker in test split. All speakers are covered.",
)
parser.add_argument(
"--seed-for-ds-split",
default=100,
type=float,
help="Seed for deterministic split of train/dev/test, NVIDIA's default is 100",
)
args = parser.parse_args()
return args
def __maybe_download_file(source_url, destination_path):
if not destination_path.exists():
logging.info(f"Downloading data: {source_url} --> {destination_path}")
tmp_file_path = destination_path.with_suffix(".tmp")
urllib.request.urlretrieve(source_url, filename=tmp_file_path)
tmp_file_path.rename(destination_path)
else:
logging.info(f"Skipped downloading data because it exists: {destination_path}")
def __extract_file(filepath, data_dir):
logging.info(f"Unzipping data: {filepath} --> {data_dir}")
shutil.unpack_archive(filepath, data_dir)
logging.info(f"Unzipping data is complete: {filepath}.")
def __save_json(json_file, dict_list):
logging.info(f"Saving JSON split to {json_file}.")
with open(json_file, "w") as f:
for d in dict_list:
f.write(json.dumps(d) + "\n")
def __process_data(
dataset_path, stat_path_root, speaker_id, min_duration, max_duration, val_size, test_size, seed_for_ds_split,
):
logging.info(f"Preparing JSON split for speaker {speaker_id}.")
# parse statistic.txt
stat_path = stat_path_root / "statistic.txt"
with open(stat_path, 'r') as fstat:
lines = fstat.readlines()
num_utts = int(lines[4].strip().split()[-1])
hours = round(float(lines[9].strip().split()[-1]) / 3600.0, 2)
# parse overview.csv to generate JSON splits.
overview_path = stat_path_root / "overview.csv"
entries = []
with open(overview_path, 'r') as foverview:
# Let's skip the header
foverview.readline()
for line in tqdm(foverview):
file_stem, duration, *_, text = line.strip().split("|")
duration = float(duration)
# file_stem -> dir_name (e.g. maerchen_01_f000051 -> maerchen)
dir_name = "_".join(file_stem.split("_")[:-2])
audio_path = dataset_path / dir_name / "wavs" / f"{file_stem}.wav"
if min_duration <= duration <= max_duration:
entry = {
"audio_filepath": str(audio_path),
"duration": duration,
"text": text,
"speaker": speaker_id,
}
entries.append(entry)
random.Random(seed_for_ds_split).shuffle(entries)
train_size = len(entries) - val_size - test_size
if train_size <= 0:
logging.warning(f"Skipped speaker {speaker_id}. Not enough data for train, val and test.")
train, val, test, is_skipped = [], [], [], True
else:
logging.info(f"Preparing JSON split for speaker {speaker_id} is complete.")
train, val, test, is_skipped = (
entries[:train_size],
entries[train_size : train_size + val_size],
entries[train_size + val_size :],
False,
)
return {
"train": train,
"val": val,
"test": test,
"is_skipped": is_skipped,
"hours": hours,
"num_utts": num_utts,
}
def __text_normalization(json_file, num_workers=-1):
text_normalizer_call_kwargs = {
"punct_pre_process": True,
"punct_post_process": True,
}
text_normalizer = Normalizer(
lang="de", input_case="cased", overwrite_cache=True, cache_dir=str(json_file.parent / "cache_dir"),
)
def normalizer_call(x):
return text_normalizer.normalize(x, **text_normalizer_call_kwargs)
def add_normalized_text(line_dict):
normalized_text = normalizer_call(line_dict["text"])
line_dict.update({"normalized_text": normalized_text})
return line_dict
logging.info(f"Normalizing text for {json_file}.")
with open(json_file, 'r', encoding='utf-8') as fjson:
lines = fjson.readlines()
# Note: you need to verify which backend works well on your cluster.
# backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
dict_list = Parallel(n_jobs=num_workers)(
delayed(add_normalized_text)(json.loads(line)) for line in tqdm(lines)
)
json_file_text_normed = json_file.parent / f"{json_file.stem}_text_normed{json_file.suffix}"
with open(json_file_text_normed, 'w', encoding="utf-8") as fjson_norm:
for dct in dict_list:
fjson_norm.write(json.dumps(dct) + "\n")
logging.info(f"Normalizing text is complete: {json_file} --> {json_file_text_normed}")
def main():
args = get_args()
data_root = args.data_root
manifests_root = args.manifests_root
set_type = args.set_type
dataset_root = data_root / f"HUI-Audio-Corpus-German-{set_type}"
dataset_root.mkdir(parents=True, exist_ok=True)
if set_type == "full":
data_source = URLS_FULL
stats_source = URL_STATS_FULL
elif set_type == "clean":
data_source = URLS_CLEAN
stats_source = URL_STATS_CLEAN
else:
raise ValueError(f"Unknown {set_type}. Please choose either clean or full.")
# download and unzip dataset stats
zipped_stats_path = dataset_root / Path(stats_source).name
__maybe_download_file(stats_source, zipped_stats_path)
__extract_file(zipped_stats_path, dataset_root)
# download datasets
# Note: you need to verify which backend works well on your cluster.
# backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
Parallel(n_jobs=args.num_workers)(
delayed(__maybe_download_file)(data_url, dataset_root / Path(data_url).name)
for _, data_url in data_source.items()
)
# unzip datasets
# Note: you need to verify which backend works well on your cluster.
# backend="loky" is fine on multi-core Ubuntu OS; backend="threading" on Slurm.
Parallel(n_jobs=args.num_workers)(
delayed(__extract_file)(dataset_root / Path(data_url).name, dataset_root)
for _, data_url in data_source.items()
)
# generate json files for train/val/test splits
stats_path_root = dataset_root / Path(stats_source).stem / "speacker"
entries_train, entries_val, entries_test = [], [], []
speaker_entries = []
num_speakers = 0
for child in stats_path_root.iterdir():
if child.is_dir():
speaker = child.name
num_speakers += 1
speaker_stats_root = stats_path_root / speaker
speaker_data_path = dataset_root / speaker
logging.info(f"Processing Speaker: {speaker}")
results = __process_data(
speaker_data_path,
speaker_stats_root,
num_speakers,
args.min_duration,
args.max_duration,
args.val_num_utts_per_speaker,
args.test_num_utts_per_speaker,
args.seed_for_ds_split,
)
entries_train.extend(results["train"])
entries_val.extend(results["val"])
entries_test.extend(results["test"])
speaker_entry = {
"speaker_name": speaker,
"speaker_id": num_speakers,
"hours": results["hours"],
"num_utts": results["num_utts"],
"is_skipped": results["is_skipped"],
}
speaker_entries.append(speaker_entry)
# shuffle in place across multiple speakers
random.Random(args.seed_for_ds_split).shuffle(entries_train)
random.Random(args.seed_for_ds_split).shuffle(entries_val)
random.Random(args.seed_for_ds_split).shuffle(entries_test)
# save speaker stats.
df = pd.DataFrame.from_records(speaker_entries)
df.sort_values(by="hours", ascending=False, inplace=True)
spk2id_file_path = manifests_root / "spk2id.csv"
df.to_csv(spk2id_file_path, index=False)
logging.info(f"Saving Speaker to ID mapping to {spk2id_file_path}.")
# save json splits.
train_json = manifests_root / "train_manifest.json"
val_json = manifests_root / "val_manifest.json"
test_json = manifests_root / "test_manifest.json"
__save_json(train_json, entries_train)
__save_json(val_json, entries_val)
__save_json(test_json, entries_test)
# normalize text if requested. New json file, train_manifest_text_normed.json, will be generated.
if args.normalize_text:
__text_normalization(train_json, args.num_workers)
__text_normalization(val_json, args.num_workers)
__text_normalization(test_json, args.num_workers)
if __name__ == "__main__":
main()