Upload 2 files
Browse files- configuration_switchllama.py +177 -0
- modeling_switchllama.py +735 -0
configuration_switchllama.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" LLaMA model configuration"""
|
2 |
+
|
3 |
+
# from ...configuration_utils import PretrainedConfig
|
4 |
+
# from ...utils import logging
|
5 |
+
from transformers.models.llama.configuration_llama import *
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
11 |
+
|
12 |
+
|
13 |
+
class SwitchLlamaConfig(PretrainedConfig):
|
14 |
+
r"""
|
15 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
16 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
17 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
18 |
+
|
19 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
20 |
+
documentation from [`PretrainedConfig`] for more information.
|
21 |
+
|
22 |
+
|
23 |
+
Args:
|
24 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
25 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
26 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
27 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
28 |
+
Dimension of the hidden representations.
|
29 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
30 |
+
Dimension of the MLP representations.
|
31 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
32 |
+
Number of hidden layers in the Transformer encoder.
|
33 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
34 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
35 |
+
num_key_value_heads (`int`, *optional*):
|
36 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
37 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
38 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
39 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
40 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
41 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
42 |
+
`num_attention_heads`.
|
43 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
44 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
45 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
46 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
47 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
49 |
+
The non-linear activation function (function or string) in the decoder.
|
50 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
51 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
52 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
53 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
54 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
55 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
56 |
+
The epsilon used by the rms normalization layers.
|
57 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
58 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
59 |
+
relevant if `config.is_decoder=True`.
|
60 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
61 |
+
Whether to tie weight embeddings
|
62 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
63 |
+
The base period of the RoPE embeddings.
|
64 |
+
rope_scaling (`Dict`, *optional*):
|
65 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
66 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
67 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
68 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
69 |
+
these scaling strategies behave:
|
70 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
71 |
+
experimental feature, subject to breaking API changes in future versions.
|
72 |
+
|
73 |
+
Example:
|
74 |
+
|
75 |
+
```python
|
76 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
77 |
+
|
78 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
79 |
+
>>> configuration = LlamaConfig()
|
80 |
+
|
81 |
+
>>> # Initializing a model from the llama-7b style configuration
|
82 |
+
>>> model = LlamaModel(configuration)
|
83 |
+
|
84 |
+
>>> # Accessing the model configuration
|
85 |
+
>>> configuration = model.config
|
86 |
+
```"""
|
87 |
+
model_type = "switchllama"
|
88 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
vocab_size=32000,
|
93 |
+
hidden_size=4096,
|
94 |
+
intermediate_size=11008,
|
95 |
+
num_hidden_layers=32,
|
96 |
+
num_attention_heads=32,
|
97 |
+
num_key_value_heads=None,
|
98 |
+
hidden_act="silu",
|
99 |
+
max_position_embeddings=2048,
|
100 |
+
initializer_range=0.02,
|
101 |
+
rms_norm_eps=1e-6,
|
102 |
+
use_cache=True,
|
103 |
+
pad_token_id=None,
|
104 |
+
bos_token_id=1,
|
105 |
+
eos_token_id=2,
|
106 |
+
pretraining_tp=1,
|
107 |
+
tie_word_embeddings=False,
|
108 |
+
rope_theta=10000.0,
|
109 |
+
rope_scaling=None,
|
110 |
+
# extra!
|
111 |
+
expert_capacity=64,
|
112 |
+
router_bias=False,
|
113 |
+
router_jitter_noise=0.01,
|
114 |
+
router_ignore_padding_tokens=False,
|
115 |
+
num_experts=8,
|
116 |
+
dropout_rate=0.01,
|
117 |
+
router_aux_loss_coef=0.001,
|
118 |
+
router_z_loss_coef=0.001,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
self.router_aux_loss_coef=router_aux_loss_coef
|
122 |
+
self.router_z_loss_coef=router_z_loss_coef
|
123 |
+
self.dropout_rate = dropout_rate
|
124 |
+
self.num_experts = num_experts
|
125 |
+
self.router_ignore_padding_tokens = router_ignore_padding_tokens
|
126 |
+
self.router_jitter_noise = router_jitter_noise
|
127 |
+
self.router_bias = router_bias
|
128 |
+
self.expert_capacity = expert_capacity
|
129 |
+
self.vocab_size = vocab_size
|
130 |
+
self.max_position_embeddings = max_position_embeddings
|
131 |
+
self.hidden_size = hidden_size
|
132 |
+
self.intermediate_size = intermediate_size
|
133 |
+
self.num_hidden_layers = num_hidden_layers
|
134 |
+
self.num_attention_heads = num_attention_heads
|
135 |
+
|
136 |
+
# for backward compatibility
|
137 |
+
if num_key_value_heads is None:
|
138 |
+
num_key_value_heads = num_attention_heads
|
139 |
+
|
140 |
+
self.num_key_value_heads = num_key_value_heads
|
141 |
+
self.hidden_act = hidden_act
|
142 |
+
self.initializer_range = initializer_range
|
143 |
+
self.rms_norm_eps = rms_norm_eps
|
144 |
+
self.pretraining_tp = pretraining_tp
|
145 |
+
self.use_cache = use_cache
|
146 |
+
self.rope_theta = rope_theta
|
147 |
+
self.rope_scaling = rope_scaling
|
148 |
+
self._rope_scaling_validation()
|
149 |
+
|
150 |
+
super().__init__(
|
151 |
+
pad_token_id=pad_token_id,
|
152 |
+
bos_token_id=bos_token_id,
|
153 |
+
eos_token_id=eos_token_id,
|
154 |
+
tie_word_embeddings=tie_word_embeddings,
|
155 |
+
**kwargs,
|
156 |
+
)
|
157 |
+
|
158 |
+
def _rope_scaling_validation(self):
|
159 |
+
"""
|
160 |
+
Validate the `rope_scaling` configuration.
|
161 |
+
"""
|
162 |
+
if self.rope_scaling is None:
|
163 |
+
return
|
164 |
+
|
165 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
166 |
+
raise ValueError(
|
167 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
168 |
+
f"got {self.rope_scaling}"
|
169 |
+
)
|
170 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
171 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
172 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
173 |
+
raise ValueError(
|
174 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
175 |
+
)
|
176 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
177 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
modeling_switchllama.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copyright idek
|
2 |
+
|
3 |
+
from transformers.models.llama.modeling_llama import *
|
4 |
+
from torch import nn
|
5 |
+
import torch
|
6 |
+
from configuration_switchllama import SwitchLlamaConfig
|
7 |
+
|
8 |
+
|
9 |
+
def router_z_loss_func(router_logits: torch.Tensor) -> float:
|
10 |
+
r"""
|
11 |
+
Compute the router z-loss implemented in PyTorch.
|
12 |
+
|
13 |
+
The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906).
|
14 |
+
It encourages router logits to remain small in an effort to improve stability.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
router_logits (`float`):
|
18 |
+
Input logits of shape [batch_size, sequence_length, num_experts]
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
Scalar router z-loss.
|
22 |
+
"""
|
23 |
+
num_groups, tokens_per_group, _ = router_logits.shape
|
24 |
+
log_z = torch.logsumexp(router_logits, dim=-1)
|
25 |
+
z_loss = log_z**2
|
26 |
+
return torch.sum(z_loss) / (num_groups * tokens_per_group)
|
27 |
+
|
28 |
+
|
29 |
+
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
|
30 |
+
r"""
|
31 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
32 |
+
|
33 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
34 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
35 |
+
experts is too unbalanced.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
router_probs (`torch.Tensor`):
|
39 |
+
Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts].
|
40 |
+
expert_indices (`torch.Tensor`):
|
41 |
+
Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
The auxiliary loss.
|
45 |
+
"""
|
46 |
+
num_experts = router_probs.shape[-1]
|
47 |
+
|
48 |
+
# cast the expert indices to int64, otherwise one-hot encoding will fail
|
49 |
+
if expert_indices.dtype != torch.int64:
|
50 |
+
expert_indices = expert_indices.to(torch.int64)
|
51 |
+
|
52 |
+
if len(expert_indices.shape) == 2:
|
53 |
+
expert_indices = expert_indices.unsqueeze(2)
|
54 |
+
|
55 |
+
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
|
56 |
+
|
57 |
+
# For a given token, determine if it was routed to a given expert.
|
58 |
+
expert_mask = torch.max(expert_mask, axis=-2).values
|
59 |
+
|
60 |
+
# cast to float32 otherwise mean will fail
|
61 |
+
expert_mask = expert_mask.to(torch.float32)
|
62 |
+
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
|
63 |
+
|
64 |
+
router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2)
|
65 |
+
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
|
66 |
+
|
67 |
+
|
68 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
69 |
+
def _make_causal_mask(
|
70 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
71 |
+
):
|
72 |
+
"""
|
73 |
+
Make causal mask used for bi-directional self-attention.
|
74 |
+
"""
|
75 |
+
bsz, tgt_len = input_ids_shape
|
76 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
77 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
78 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
79 |
+
mask = mask.to(dtype)
|
80 |
+
|
81 |
+
if past_key_values_length > 0:
|
82 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
83 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
84 |
+
|
85 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
86 |
+
"""
|
87 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
88 |
+
"""
|
89 |
+
bsz, src_len = mask.size()
|
90 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
91 |
+
|
92 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
93 |
+
|
94 |
+
inverted_mask = 1.0 - expanded_mask
|
95 |
+
|
96 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
class SwitchLlamaTop1Router(nn.Module):
|
101 |
+
"""
|
102 |
+
Router using tokens choose top-1 experts assignment.
|
103 |
+
|
104 |
+
This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE
|
105 |
+
(https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then
|
106 |
+
routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each
|
107 |
+
token is processed by an expert**, or that each expert receives at least one token.
|
108 |
+
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(self, config: SwitchLlamaConfig):
|
112 |
+
super().__init__()
|
113 |
+
self.num_experts = config.num_experts
|
114 |
+
self.expert_capacity = config.expert_capacity
|
115 |
+
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias)
|
116 |
+
self.jitter_noise = config.router_jitter_noise
|
117 |
+
self.ignore_padding_tokens = config.router_ignore_padding_tokens
|
118 |
+
|
119 |
+
def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
120 |
+
r"""
|
121 |
+
Computes router probabilities from input hidden states.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
hidden_states (`torch.Tensor`):
|
125 |
+
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed.
|
126 |
+
Returns:
|
127 |
+
router_probabilities (`torch.Tensor`):
|
128 |
+
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each
|
129 |
+
token and expert. Used for routing tokens to experts.
|
130 |
+
router_logits (`torch.Tensor`):
|
131 |
+
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits.
|
132 |
+
This is used later for computing router z-loss.
|
133 |
+
"""
|
134 |
+
if self.jitter_noise > 0:
|
135 |
+
# Get the lower and upper bound of the uniform distribution
|
136 |
+
# Adapted from: https://stackoverflow.com/questions/44328530/how-to-get-a-uniform-distribution-in-a-range-r1-r2-in-pytorch
|
137 |
+
distrib_lower_bound = 1.0 - self.jitter_noise
|
138 |
+
distrib_upper_bound = 1.0 + self.jitter_noise
|
139 |
+
|
140 |
+
uniform_distrib = torch.rand(hidden_states.shape, device=hidden_states.device, dtype=hidden_states.dtype)
|
141 |
+
uniform_distrib = uniform_distrib * (distrib_lower_bound - distrib_upper_bound)
|
142 |
+
|
143 |
+
uniform_distrib = uniform_distrib + distrib_upper_bound
|
144 |
+
# Multiply the token inputs by the uniform distribution - adding some noise
|
145 |
+
hidden_states *= uniform_distrib
|
146 |
+
|
147 |
+
# Shape: [num_groups, tokens_per_group, num_experts]
|
148 |
+
router_logits = self.classifier(hidden_states)
|
149 |
+
|
150 |
+
# Apply Softmax
|
151 |
+
router_probabilities = nn.functional.softmax(router_logits, dim=-1)
|
152 |
+
return router_probabilities, router_logits
|
153 |
+
|
154 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple:
|
155 |
+
r"""
|
156 |
+
Generic forward function for every Router class. Each Router expects to have the same input hidden states
|
157 |
+
(`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the
|
158 |
+
number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert.
|
159 |
+
|
160 |
+
Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and
|
161 |
+
`router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned
|
162 |
+
to an expert. Then each Router class will have to define its own `_compute_routing_instructions`.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
hidden_states (`torch.Tensor`) :
|
166 |
+
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts.
|
167 |
+
Returns:
|
168 |
+
Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs
|
169 |
+
and the router logits. The router probabilities and logits are required to compute the loss.
|
170 |
+
"""
|
171 |
+
router_probs, router_logits = self._compute_router_probabilities(hidden_states)
|
172 |
+
|
173 |
+
expert_index = torch.argmax(router_probs, dim=-1)
|
174 |
+
expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts)
|
175 |
+
|
176 |
+
# Mask tokens outside expert capacity. Sum over each sequence
|
177 |
+
token_priority = torch.cumsum(expert_index, dim=-2)
|
178 |
+
# mask if the token routed to to the expert will overflow
|
179 |
+
expert_capacity_mask = token_priority <= self.expert_capacity
|
180 |
+
expert_index = expert_index * expert_capacity_mask
|
181 |
+
|
182 |
+
router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1)
|
183 |
+
return expert_index, router_probs, router_logits
|
184 |
+
|
185 |
+
class SwitchLlamaSparseMLP(nn.Module):
|
186 |
+
r"""
|
187 |
+
Implementation of the Switch Transformers Sparse MLP module.
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __init__(self, config: SwitchLlamaConfig, expert_class: nn.Module = LlamaMLP):
|
191 |
+
super().__init__()
|
192 |
+
# Step 1: Get the correct router according to its class
|
193 |
+
self.router = SwitchLlamaTop1Router(config)
|
194 |
+
|
195 |
+
# Step 2: Get the experts
|
196 |
+
self.experts = nn.ModuleDict()
|
197 |
+
for idx in range(config.num_experts):
|
198 |
+
self.experts[f"expert_{idx}"] = expert_class(config)
|
199 |
+
|
200 |
+
def forward(self, hidden_states):
|
201 |
+
r"""
|
202 |
+
Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following:
|
203 |
+
|
204 |
+
1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)`
|
205 |
+
and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the
|
206 |
+
hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor).
|
207 |
+
|
208 |
+
2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each
|
209 |
+
expert the corresponding hidden states.
|
210 |
+
|
211 |
+
"""
|
212 |
+
# Step 1: Get the router_mask from the router as wel as the probabilities
|
213 |
+
router_mask, router_probs, router_logits = self.router(hidden_states)
|
214 |
+
expert_index = torch.argmax(router_mask, dim=-1)
|
215 |
+
|
216 |
+
# The routers introduced might not always map all the tokens, to a router, which means that some hidden states
|
217 |
+
# can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones.
|
218 |
+
|
219 |
+
next_states = hidden_states.clone()
|
220 |
+
for idx, expert in enumerate(self.experts.values()):
|
221 |
+
token_indices = router_mask[:, :, idx].bool()
|
222 |
+
next_states[token_indices] = expert(hidden_states[token_indices])
|
223 |
+
|
224 |
+
hidden_states = router_probs * next_states
|
225 |
+
return hidden_states, (router_logits, expert_index)
|
226 |
+
|
227 |
+
class SwitchLlamaLayerFF(nn.Module):
|
228 |
+
r"""
|
229 |
+
Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module.
|
230 |
+
|
231 |
+
Parameters:
|
232 |
+
config : ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model.
|
233 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
234 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
235 |
+
is_sparse (`bool`):
|
236 |
+
Whether the MLP layer is a `Sparse` layer (contains a Mixture of Experts) or not
|
237 |
+
"""
|
238 |
+
|
239 |
+
def __init__(self, config: SwitchLlamaConfig, is_sparse=True):
|
240 |
+
super().__init__()
|
241 |
+
self.is_sparse = is_sparse
|
242 |
+
|
243 |
+
# Check if it is a sparse layer, if not then it is a dense layer
|
244 |
+
if not self.is_sparse:
|
245 |
+
self.mlp = LlamaMLP(config)
|
246 |
+
else:
|
247 |
+
self.mlp = SwitchLlamaSparseMLP(config)
|
248 |
+
|
249 |
+
# self.layer_norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
250 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
251 |
+
|
252 |
+
def forward(self, hidden_states, output_router_logits=False):
|
253 |
+
# forwarded_states = self.layer_norm(hidden_states)
|
254 |
+
forwarded_states = self.mlp(hidden_states)
|
255 |
+
|
256 |
+
if isinstance(forwarded_states, tuple):
|
257 |
+
forwarded_states, router_tuple = forwarded_states
|
258 |
+
else:
|
259 |
+
router_tuple = None
|
260 |
+
|
261 |
+
output = hidden_states + self.dropout(forwarded_states)
|
262 |
+
|
263 |
+
if output_router_logits and router_tuple is not None:
|
264 |
+
output = (output, router_tuple)
|
265 |
+
|
266 |
+
return output
|
267 |
+
|
268 |
+
class SwitchLlamaDecoderLayer(nn.Module):
|
269 |
+
def __init__(self, config: SwitchLlamaConfig):
|
270 |
+
super().__init__()
|
271 |
+
self.hidden_size = config.hidden_size
|
272 |
+
self.self_attn = LlamaAttention(config=config)
|
273 |
+
self.mlp = SwitchLlamaLayerFF(config)
|
274 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
275 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
276 |
+
|
277 |
+
def forward(
|
278 |
+
self,
|
279 |
+
hidden_states: torch.Tensor,
|
280 |
+
attention_mask: Optional[torch.Tensor] = None,
|
281 |
+
position_ids: Optional[torch.LongTensor] = None,
|
282 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
283 |
+
output_attentions: Optional[bool] = False,
|
284 |
+
use_cache: Optional[bool] = False,
|
285 |
+
output_router_logits = True
|
286 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
290 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
291 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
292 |
+
output_attentions (`bool`, *optional*):
|
293 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
294 |
+
returned tensors for more detail.
|
295 |
+
use_cache (`bool`, *optional*):
|
296 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
297 |
+
(see `past_key_values`).
|
298 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
299 |
+
"""
|
300 |
+
|
301 |
+
residual = hidden_states
|
302 |
+
|
303 |
+
hidden_states = self.input_layernorm(hidden_states)
|
304 |
+
|
305 |
+
# Self Attention
|
306 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
307 |
+
hidden_states=hidden_states,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
position_ids=position_ids,
|
310 |
+
past_key_value=past_key_value,
|
311 |
+
output_attentions=output_attentions,
|
312 |
+
use_cache=use_cache,
|
313 |
+
)
|
314 |
+
hidden_states = residual + hidden_states
|
315 |
+
|
316 |
+
# Fully Connected
|
317 |
+
residual = hidden_states
|
318 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
319 |
+
hidden_states = self.mlp(hidden_states, output_router_logits=output_router_logits)
|
320 |
+
if type(hidden_states)==tuple:
|
321 |
+
hidden_states, router_tuple = hidden_states
|
322 |
+
else:
|
323 |
+
router_tuple = (torch.tensor([0], device=hidden_states.device),)
|
324 |
+
hidden_states = residual + hidden_states
|
325 |
+
|
326 |
+
outputs = (hidden_states,)
|
327 |
+
|
328 |
+
if output_attentions:
|
329 |
+
outputs += (self_attn_weights,)
|
330 |
+
|
331 |
+
if use_cache:
|
332 |
+
outputs += (present_key_value,)
|
333 |
+
|
334 |
+
# if output_router_logits:
|
335 |
+
# outputs += (router_tuple,)
|
336 |
+
return outputs + (router_tuple,)
|
337 |
+
|
338 |
+
class SwitchLlamaPreTrainedModel(PreTrainedModel):
|
339 |
+
config_class = SwitchLlamaConfig
|
340 |
+
base_model_prefix = "model"
|
341 |
+
supports_gradient_checkpointing = True
|
342 |
+
_no_split_modules = ["SwitchLlamaDecoderLayer"]
|
343 |
+
_skip_keys_device_placement = "past_key_values"
|
344 |
+
|
345 |
+
def _init_weights(self, module):
|
346 |
+
std = self.config.initializer_range
|
347 |
+
if isinstance(module, nn.Linear):
|
348 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
349 |
+
if module.bias is not None:
|
350 |
+
module.bias.data.zero_()
|
351 |
+
elif isinstance(module, nn.Embedding):
|
352 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
353 |
+
if module.padding_idx is not None:
|
354 |
+
module.weight.data[module.padding_idx].zero_()
|
355 |
+
|
356 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
357 |
+
if isinstance(module, LlamaModel):
|
358 |
+
module.gradient_checkpointing = value
|
359 |
+
|
360 |
+
|
361 |
+
class SwitchLlamaModel(SwitchLlamaPreTrainedModel):
|
362 |
+
"""
|
363 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
364 |
+
|
365 |
+
Args:
|
366 |
+
config: SwitchLlamaConfig
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(self, config: SwitchLlamaConfig):
|
370 |
+
super().__init__(config)
|
371 |
+
self.padding_idx = config.pad_token_id
|
372 |
+
self.vocab_size = config.vocab_size
|
373 |
+
|
374 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
375 |
+
self.layers = nn.ModuleList([SwitchLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
376 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
377 |
+
|
378 |
+
self.gradient_checkpointing = False
|
379 |
+
# Initialize weights and apply final processing
|
380 |
+
self.post_init()
|
381 |
+
|
382 |
+
def get_input_embeddings(self):
|
383 |
+
return self.embed_tokens
|
384 |
+
|
385 |
+
def set_input_embeddings(self, value):
|
386 |
+
self.embed_tokens = value
|
387 |
+
|
388 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
389 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
390 |
+
# create causal mask
|
391 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
392 |
+
combined_attention_mask = None
|
393 |
+
if input_shape[-1] > 1:
|
394 |
+
combined_attention_mask = _make_causal_mask(
|
395 |
+
input_shape,
|
396 |
+
inputs_embeds.dtype,
|
397 |
+
device=inputs_embeds.device,
|
398 |
+
past_key_values_length=past_key_values_length,
|
399 |
+
)
|
400 |
+
|
401 |
+
if attention_mask is not None:
|
402 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
403 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
404 |
+
inputs_embeds.device
|
405 |
+
)
|
406 |
+
combined_attention_mask = (
|
407 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
408 |
+
)
|
409 |
+
|
410 |
+
return combined_attention_mask
|
411 |
+
|
412 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
input_ids: torch.LongTensor = None,
|
416 |
+
attention_mask: Optional[torch.Tensor] = None,
|
417 |
+
position_ids: Optional[torch.LongTensor] = None,
|
418 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
419 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
420 |
+
use_cache: Optional[bool] = None,
|
421 |
+
output_attentions: Optional[bool] = None,
|
422 |
+
output_hidden_states: Optional[bool] = None,
|
423 |
+
return_dict: Optional[bool] = None,
|
424 |
+
output_router_logits = False
|
425 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
426 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
427 |
+
output_hidden_states = (
|
428 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
429 |
+
)
|
430 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
431 |
+
|
432 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
433 |
+
all_router_probs = () if output_router_logits else None
|
434 |
+
# retrieve input_ids and inputs_embeds
|
435 |
+
if input_ids is not None and inputs_embeds is not None:
|
436 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
437 |
+
elif input_ids is not None:
|
438 |
+
batch_size, seq_length = input_ids.shape
|
439 |
+
elif inputs_embeds is not None:
|
440 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
441 |
+
else:
|
442 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
443 |
+
|
444 |
+
seq_length_with_past = seq_length
|
445 |
+
past_key_values_length = 0
|
446 |
+
|
447 |
+
if past_key_values is not None:
|
448 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
449 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
450 |
+
|
451 |
+
if position_ids is None:
|
452 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
453 |
+
position_ids = torch.arange(
|
454 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
455 |
+
)
|
456 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
457 |
+
else:
|
458 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
459 |
+
|
460 |
+
if inputs_embeds is None:
|
461 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
462 |
+
# embed positions
|
463 |
+
if attention_mask is None:
|
464 |
+
attention_mask = torch.ones(
|
465 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
466 |
+
)
|
467 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
468 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
469 |
+
)
|
470 |
+
|
471 |
+
hidden_states = inputs_embeds
|
472 |
+
|
473 |
+
if self.gradient_checkpointing and self.training:
|
474 |
+
if use_cache:
|
475 |
+
logger.warning_once(
|
476 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
477 |
+
)
|
478 |
+
use_cache = False
|
479 |
+
|
480 |
+
# decoder layers
|
481 |
+
all_hidden_states = () if output_hidden_states else None
|
482 |
+
all_self_attns = () if output_attentions else None
|
483 |
+
next_decoder_cache = () if use_cache else None
|
484 |
+
|
485 |
+
for idx, decoder_layer in enumerate(self.layers):
|
486 |
+
if output_hidden_states:
|
487 |
+
all_hidden_states += (hidden_states,)
|
488 |
+
|
489 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
490 |
+
|
491 |
+
if self.gradient_checkpointing and self.training:
|
492 |
+
|
493 |
+
def create_custom_forward(module):
|
494 |
+
def custom_forward(*inputs):
|
495 |
+
# None for past_key_value
|
496 |
+
return module(*inputs, past_key_value, output_attentions)
|
497 |
+
|
498 |
+
return custom_forward
|
499 |
+
|
500 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
501 |
+
create_custom_forward(decoder_layer),
|
502 |
+
hidden_states,
|
503 |
+
attention_mask,
|
504 |
+
position_ids,
|
505 |
+
)
|
506 |
+
else:
|
507 |
+
layer_outputs = decoder_layer(
|
508 |
+
hidden_states,
|
509 |
+
attention_mask=attention_mask,
|
510 |
+
position_ids=position_ids,
|
511 |
+
past_key_value=past_key_value,
|
512 |
+
output_attentions=output_attentions,
|
513 |
+
use_cache=use_cache,
|
514 |
+
output_router_logits=output_router_logits
|
515 |
+
)
|
516 |
+
|
517 |
+
hidden_states = layer_outputs[0]
|
518 |
+
router_probs = layer_outputs[-1]
|
519 |
+
|
520 |
+
if use_cache:
|
521 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
522 |
+
|
523 |
+
if output_attentions:
|
524 |
+
all_self_attns += (layer_outputs[1],)
|
525 |
+
|
526 |
+
if output_router_logits:
|
527 |
+
all_router_probs = all_router_probs + (router_probs,)
|
528 |
+
hidden_states = self.norm(hidden_states)
|
529 |
+
|
530 |
+
# add hidden states from the last decoder layer
|
531 |
+
if output_hidden_states:
|
532 |
+
all_hidden_states += (hidden_states,)
|
533 |
+
|
534 |
+
next_cache = next_decoder_cache if use_cache else None
|
535 |
+
if not return_dict:
|
536 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
537 |
+
|
538 |
+
from transformers.models.switch_transformers.modeling_switch_transformers import MoEModelOutputWithPastAndCrossAttentions
|
539 |
+
return MoEModelOutputWithPastAndCrossAttentions(
|
540 |
+
last_hidden_state=hidden_states,
|
541 |
+
past_key_values=next_cache,
|
542 |
+
hidden_states=all_hidden_states,
|
543 |
+
attentions=all_self_attns,
|
544 |
+
router_probs=all_router_probs,
|
545 |
+
)
|
546 |
+
|
547 |
+
class SwitchLlamaForCausalLM(SwitchLlamaPreTrainedModel):
|
548 |
+
_tied_weights_keys = ["lm_head.weight"]
|
549 |
+
|
550 |
+
def __init__(self, config):
|
551 |
+
super().__init__(config)
|
552 |
+
self.model = SwitchLlamaModel(config)
|
553 |
+
self.vocab_size = config.vocab_size
|
554 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
555 |
+
|
556 |
+
self.router_z_loss_coef = config.router_z_loss_coef
|
557 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
558 |
+
# Initialize weights and apply final processing
|
559 |
+
self.post_init()
|
560 |
+
def _unpack_router_logits(self, router_outputs):
|
561 |
+
total_router_logits = []
|
562 |
+
total_expert_indexes = []
|
563 |
+
for router_output in router_outputs:
|
564 |
+
if len(router_output[0].shape) > 1:
|
565 |
+
router_logits, expert_indexes = router_output
|
566 |
+
total_router_logits.append(router_logits)
|
567 |
+
total_expert_indexes.append(expert_indexes)
|
568 |
+
return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1)
|
569 |
+
|
570 |
+
|
571 |
+
def get_input_embeddings(self):
|
572 |
+
return self.model.embed_tokens
|
573 |
+
|
574 |
+
def set_input_embeddings(self, value):
|
575 |
+
self.model.embed_tokens = value
|
576 |
+
|
577 |
+
def get_output_embeddings(self):
|
578 |
+
return self.lm_head
|
579 |
+
|
580 |
+
def set_output_embeddings(self, new_embeddings):
|
581 |
+
self.lm_head = new_embeddings
|
582 |
+
|
583 |
+
def set_decoder(self, decoder):
|
584 |
+
self.model = decoder
|
585 |
+
|
586 |
+
def get_decoder(self):
|
587 |
+
return self.model
|
588 |
+
|
589 |
+
def forward(
|
590 |
+
self,
|
591 |
+
input_ids: torch.LongTensor = None,
|
592 |
+
attention_mask: Optional[torch.Tensor] = None,
|
593 |
+
position_ids: Optional[torch.LongTensor] = None,
|
594 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
595 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
596 |
+
labels: Optional[torch.LongTensor] = None,
|
597 |
+
use_cache: Optional[bool] = None,
|
598 |
+
output_attentions: Optional[bool] = None,
|
599 |
+
output_hidden_states: Optional[bool] = None,
|
600 |
+
return_dict: Optional[bool] = None,
|
601 |
+
output_router_logits = False,
|
602 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
603 |
+
r"""
|
604 |
+
Args:
|
605 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
606 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
607 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
608 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
609 |
+
|
610 |
+
Returns:
|
611 |
+
|
612 |
+
Example:
|
613 |
+
|
614 |
+
```python
|
615 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
616 |
+
|
617 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
618 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
619 |
+
|
620 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
621 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
622 |
+
|
623 |
+
>>> # Generate
|
624 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
625 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
626 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
627 |
+
```"""
|
628 |
+
|
629 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
630 |
+
output_hidden_states = (
|
631 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
632 |
+
)
|
633 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
634 |
+
|
635 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
636 |
+
outputs = self.model(
|
637 |
+
input_ids=input_ids,
|
638 |
+
attention_mask=attention_mask,
|
639 |
+
position_ids=position_ids,
|
640 |
+
past_key_values=past_key_values,
|
641 |
+
inputs_embeds=inputs_embeds,
|
642 |
+
use_cache=use_cache,
|
643 |
+
output_attentions=output_attentions,
|
644 |
+
output_hidden_states=output_hidden_states,
|
645 |
+
return_dict=return_dict,
|
646 |
+
output_router_logits=output_router_logits
|
647 |
+
)
|
648 |
+
|
649 |
+
hidden_states = outputs[0]
|
650 |
+
if self.config.pretraining_tp > 1:
|
651 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
652 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
653 |
+
logits = torch.cat(logits, dim=-1)
|
654 |
+
else:
|
655 |
+
logits = self.lm_head(hidden_states)
|
656 |
+
logits = logits.float()
|
657 |
+
|
658 |
+
loss = None
|
659 |
+
decoder_z_loss = None
|
660 |
+
decoder_aux_loss = None
|
661 |
+
|
662 |
+
if output_router_logits:
|
663 |
+
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(outputs[-1])
|
664 |
+
decoder_z_loss = router_z_loss_func(decoder_router_logits)
|
665 |
+
decoder_router_probs = nn.Softmax(dim=-1)(decoder_router_logits)
|
666 |
+
decoder_aux_loss = load_balancing_loss_func(decoder_router_probs, decoder_expert_indexes)
|
667 |
+
|
668 |
+
if labels is not None:
|
669 |
+
# Shift so that tokens < n predict n
|
670 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
671 |
+
shift_labels = labels[..., 1:].contiguous()
|
672 |
+
# Flatten the tokens
|
673 |
+
loss_fct = CrossEntropyLoss()
|
674 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
675 |
+
shift_labels = shift_labels.view(-1)
|
676 |
+
# Enable model parallelism
|
677 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
678 |
+
loss = loss_fct(shift_logits, shift_labels)
|
679 |
+
|
680 |
+
##########################
|
681 |
+
if output_router_logits:
|
682 |
+
z_loss = self.router_z_loss_coef * decoder_z_loss
|
683 |
+
aux_loss = self.router_aux_loss_coef * decoder_aux_loss
|
684 |
+
loss = loss + z_loss + aux_loss
|
685 |
+
#########################
|
686 |
+
if not return_dict:
|
687 |
+
output = (logits,) + outputs[1:]
|
688 |
+
return (loss,) + output if loss is not None else output
|
689 |
+
|
690 |
+
return CausalLMOutputWithPast(
|
691 |
+
loss=loss,
|
692 |
+
logits=logits,
|
693 |
+
past_key_values=outputs.past_key_values,
|
694 |
+
hidden_states=outputs.hidden_states,
|
695 |
+
attentions=outputs.attentions,
|
696 |
+
)
|
697 |
+
|
698 |
+
def prepare_inputs_for_generation(
|
699 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
700 |
+
):
|
701 |
+
if past_key_values:
|
702 |
+
input_ids = input_ids[:, -1:]
|
703 |
+
|
704 |
+
position_ids = kwargs.get("position_ids", None)
|
705 |
+
if attention_mask is not None and position_ids is None:
|
706 |
+
# create position_ids on the fly for batch generation
|
707 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
708 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
709 |
+
if past_key_values:
|
710 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
711 |
+
|
712 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
713 |
+
if inputs_embeds is not None and past_key_values is None:
|
714 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
715 |
+
else:
|
716 |
+
model_inputs = {"input_ids": input_ids}
|
717 |
+
|
718 |
+
model_inputs.update(
|
719 |
+
{
|
720 |
+
"position_ids": position_ids,
|
721 |
+
"past_key_values": past_key_values,
|
722 |
+
"use_cache": kwargs.get("use_cache"),
|
723 |
+
"attention_mask": attention_mask,
|
724 |
+
}
|
725 |
+
)
|
726 |
+
return model_inputs
|
727 |
+
|
728 |
+
@staticmethod
|
729 |
+
def _reorder_cache(past_key_values, beam_idx):
|
730 |
+
reordered_past = ()
|
731 |
+
for layer_past in past_key_values:
|
732 |
+
reordered_past += (
|
733 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
734 |
+
)
|
735 |
+
return reordered_past
|