metadata
library_name: transformers
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER-finetuning-BETO-CM-V1
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- type: precision
value: 0.949653802801782
name: Precision
- type: recall
value: 0.9613670941099761
name: Recall
- type: f1
value: 0.9554745511003105
name: F1
- type: accuracy
value: 0.976855614973262
name: Accuracy
pipeline_tag: token-classification
NER-finetuning-BETO-CM-V1
This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.1236
- Precision: 0.9497
- Recall: 0.9614
- F1: 0.9555
- Accuracy: 0.9769
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3411 | 1.0 | 612 | 0.1137 | 0.9437 | 0.9474 | 0.9456 | 0.9707 |
0.1072 | 2.0 | 1224 | 0.1090 | 0.9304 | 0.9685 | 0.9491 | 0.9727 |
0.0757 | 3.0 | 1836 | 0.1024 | 0.9450 | 0.9692 | 0.9569 | 0.9768 |
0.0589 | 4.0 | 2448 | 0.1050 | 0.9492 | 0.9666 | 0.9578 | 0.9774 |
0.0419 | 5.0 | 3060 | 0.1054 | 0.9498 | 0.9621 | 0.9559 | 0.9771 |
0.0365 | 6.0 | 3672 | 0.1124 | 0.9460 | 0.9583 | 0.9521 | 0.9753 |
0.0299 | 7.0 | 4284 | 0.1119 | 0.9495 | 0.9632 | 0.9563 | 0.9774 |
0.0282 | 8.0 | 4896 | 0.1187 | 0.9482 | 0.9625 | 0.9553 | 0.9771 |
0.0221 | 9.0 | 5508 | 0.1203 | 0.9496 | 0.9608 | 0.9551 | 0.9768 |
0.0192 | 10.0 | 6120 | 0.1236 | 0.9497 | 0.9614 | 0.9555 | 0.9769 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3