metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-no-perturb
results: []
distilbert-base-uncased-no-perturb
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1515
- Precision: 0.4338
- Recall: 0.4111
- F1: 0.4222
- Accuracy: 0.9627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 103 | 0.1867 | 0.2194 | 0.1794 | 0.1974 | 0.9505 |
No log | 2.0 | 206 | 0.1554 | 0.3708 | 0.3714 | 0.3711 | 0.9596 |
No log | 3.0 | 309 | 0.1515 | 0.4338 | 0.4111 | 0.4222 | 0.9627 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.0+cpu
- Datasets 2.18.0
- Tokenizers 0.15.2