metadata
license: apache-2.0
tags:
- protein language model
- generated_from_trainer
datasets:
- train
metrics:
- spearmanr
model-index:
- name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: cradle-bio/tape-fluorescence
type: train
metrics:
- name: Spearmanr
type: spearmanr
value: 0.6085202769301487
tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
This model is a fine-tuned version of thundaa/tape-fluorescence-evotuning-DistilProtBert on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set:
- Loss: 0.2716
- Spearmanr: 0.6085
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 17
- gradient_accumulation_steps: 64
- total_train_batch_size: 2560
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Spearmanr |
---|---|---|---|---|
5.9308 | 0.93 | 7 | 1.6932 | 0.0822 |
1.0148 | 1.93 | 14 | 0.7407 | 0.1233 |
0.7748 | 2.93 | 21 | 0.7388 | 0.3237 |
0.7444 | 3.93 | 28 | 0.8205 | 0.4712 |
0.7623 | 4.93 | 35 | 0.7168 | 0.4582 |
0.7117 | 5.93 | 42 | 0.6898 | 0.4839 |
0.7987 | 6.93 | 49 | 1.1860 | 0.3994 |
0.8235 | 7.93 | 56 | 0.7290 | 0.4122 |
1.0447 | 8.93 | 63 | 1.8475 | 0.4169 |
0.9244 | 9.93 | 70 | 0.8985 | 0.4361 |
0.7392 | 10.93 | 77 | 0.7053 | 0.4709 |
0.5879 | 11.93 | 84 | 0.4930 | 0.4761 |
0.5723 | 12.93 | 91 | 0.9298 | 0.4765 |
0.7221 | 13.93 | 98 | 0.9479 | 0.4866 |
1.0731 | 14.93 | 105 | 0.5306 | 0.5040 |
0.5242 | 15.93 | 112 | 0.6331 | 0.4938 |
0.5606 | 16.93 | 119 | 0.4096 | 0.5060 |
0.5314 | 17.93 | 126 | 0.5781 | 0.5130 |
0.4384 | 18.93 | 133 | 0.3880 | 0.5393 |
0.4117 | 19.93 | 140 | 0.4584 | 0.5504 |
0.4387 | 20.93 | 147 | 0.3611 | 0.5674 |
0.3613 | 21.93 | 154 | 0.4159 | 0.5806 |
0.5157 | 22.93 | 161 | 0.4041 | 0.5869 |
0.4049 | 23.93 | 168 | 0.3187 | 0.5888 |
0.3318 | 24.93 | 175 | 0.3206 | 0.5889 |
0.3317 | 25.93 | 182 | 0.2964 | 0.5941 |
0.303 | 26.93 | 189 | 0.2803 | 0.6006 |
0.3058 | 27.93 | 196 | 0.2758 | 0.6042 |
0.2988 | 28.93 | 203 | 0.3016 | 0.6049 |
0.2814 | 29.93 | 210 | 0.2716 | 0.6085 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1