thundaa's picture
update model card README.md
55d6d07
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
tags:
  - protein language model
  - generated_from_trainer
datasets:
  - train
metrics:
  - spearmanr
model-index:
  - name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: cradle-bio/tape-fluorescence
          type: train
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.23980333080780145

tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert

This model is a fine-tuned version of thundaa/tape-fluorescence-evotuning-DistilProtBert on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6838
  • Spearmanr: 0.2398

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 128
  • total_train_batch_size: 4096
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Spearmanr
9.0167 0.85 4 4.9224 -0.0084
4.0263 1.85 8 2.0909 0.0824
1.7616 2.85 12 0.9869 0.1583
0.9814 3.85 16 0.7071 0.2798
0.7082 4.85 20 0.6838 0.2398

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1