metadata
license: apache-2.0
tags:
- protein language model
- generated_from_trainer
datasets:
- train
metrics:
- spearmanr
model-index:
- name: tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: cradle-bio/tape-fluorescence
type: train
metrics:
- name: Spearmanr
type: spearmanr
value: 0.23980333080780145
tape-fluorescence-prediction-tape-fluorescence-evotuning-DistilProtBert
This model is a fine-tuned version of thundaa/tape-fluorescence-evotuning-DistilProtBert on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set:
- Loss: 0.6838
- Spearmanr: 0.2398
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 128
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Spearmanr |
---|---|---|---|---|
9.0167 | 0.85 | 4 | 4.9224 | -0.0084 |
4.0263 | 1.85 | 8 | 2.0909 | 0.0824 |
1.7616 | 2.85 | 12 | 0.9869 | 0.1583 |
0.9814 | 3.85 | 16 | 0.7071 | 0.2798 |
0.7082 | 4.85 | 20 | 0.6838 | 0.2398 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1