Eithannak's picture
Update README.md
26a8c29 verified
|
raw
history blame
2.83 kB
metadata
license: mit
datasets:
  - liuhaotian/LLaVA-Pretrain
  - liuhaotian/LLaVA-Instruct-150K
language:
  - en
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model:
  - apple/aimv2-large-patch14-224
  - apple/OpenELM
pipeline_tag: image-text-to-text
tags:
  - cpu
  - nano
  - small
  - tiny
  - llava
model_size: 0.6B parameters

Tiny Llava 4 CPU πŸ›

License CPU arXiv


πŸš€ Model Overview

tiny-llava-open-elm-aimv2 is a lightweight image-text-to-text model that combines OpenELM as the LLM backbone and AIMv2-Large-Patch14-224 as the vision encoder. The model has been fine-tuned using LoRA (Low-Rank Adaptation) for efficient training. It was developed using the TinyLLaVA Factory codebase, which provides a modular framework for lightweight multi-modal models.

The model is designed to run efficiently on CPU, making it ideal for resource-constrained environments. It is trained and evaluated on POPE and TextVQA benchmarks. The total model size is 0.6B parameters.


πŸ“Š Performance

Model Name VQAv2 GQA SQA TextVQA MM-VET POPE MME MMMU
LLaVA-1.5-7B 78.5 62.0 66.8 58.2 30.5 85.9 1510.7 -
bczhou/TinyLLaVA-3.1B 79.9 62.0 69.1 59.1 32.0 86.4 1464.9 -
tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B 78.4 61.6 64.4 53.6 26.9 86.4 1339.0 31.7
tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B 80.1 62.1 73.0 60.3 37.5 87.2 1466.4 38.4
tiny-llava-open-elm-aimv2 - - - 39.68 - 83.93 - -

πŸ”— References