ControlNet-Models-For-Core-ML / MISC /4. Swift-CoreML Pipeline.txt
jrrjrr's picture
Upload 5 files
0f94db5
raw
history blame
2.9 kB
-------------------------------------------------------------------------------
Model folders (noted with -cn when built for use with ControlNet) live in the /models folder.
Each -cn model must have a /controlnet folder inside it that is a symlink to the real /controlnet folder. You need to add this folder symlink to any model you download from my HF repo, after you unzip the model and put it in your /models folder.
(( The SwiftCLI scripts look for the ControlNet *.mlmodelc you are using inside the full model's /controlnet folder. This is crazy. It means every full model needs a folder inside symlinked to the /controlnet store folder. That is how they set it up and I haven't looked into editing their scripts yet. ))
The input image(s) you want to use with the ControlNet need to be inside the /input folder.
Generated images will be saved to the /images folder.
There is a screencap of the folder structure I have that matches all these notes in the MISC section at my HF page.
-------------------------------------------------------------------------------
Inference Without ControlNet (Using any standard SD-1.5 or SD-2.1 type CoreML model):
Test your setup with this first, before trying with ControlNet.
conda activate python_playground
cd xxxxx/miniconda3/envs/python_playground/coreml-swift/ml-stable-diffusion
swift run StableDiffusionSample "a photo of a cat" --seed 12 --guidance-scale 8.0 --step-count 24 --image-count 1 --scheduler dpmpp --compute-units cpuAndGPU --resource-path ../models/SD21 --output-path ../images
-------------------------------------------------------------------------------
Inference With ControlNet:
conda activate python_playground
cd /Users/jrittvo/miniconda3/envs/python_playground/coreml-swift/ml-stable-diffusion
swift run StableDiffusionSample "a photo of a green yellow and red bird" --seed 12 --guidance-scale 8.0 --step-count 24 --image-count 1 --scheduler dpmpp --compute-units cpuAndGPU --resource-path ../models/SD15-cn --controlnet Canny --controlnet-inputs ../input/canny-bird.png --output-path ../images
--negative-prompt "in quotes"
--seed default is random
--guidance-scale default is 7
--step-count default is 50
--image-count batch size, default is 1
--image path to image for image2image
--strength strength for image2image, 0.0 - 1.0, default 0.5
--scheduler pndm or dpmpp (DPM++), default is pndm
--compute-units all, cpuOnly, cpuAndGPU, cpuAndNeuralEngine
--resource-path one of the model checkpoint .mlmodelc bundle folders
--controlnet path/controlnet-model <<path/controlnet-model-2>> (no extension)
--controlnet-inputs path/image.png <<path/image-2.png>> (same order as --controlnet)
--output-path folder to save image(s) (auto-named to: prompt.seed.final.png)
--help