metadata
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-300m-west-slavic-cv8
results: []
wav2vec2-xls-r-300m-west-slavic-cv8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3462
- Wer: 0.8556
- Cer: 0.2799
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
6.548 | 1.23 | 400 | 3.4763 | 1.0 | 1.0 |
3.42 | 2.45 | 800 | 3.3156 | 1.0 | 1.0 |
3.291 | 3.68 | 1200 | 3.2396 | 1.0 | 1.0 |
2.6515 | 4.91 | 1600 | 2.0422 | 0.9997 | 0.5835 |
1.7019 | 6.13 | 2000 | 1.6337 | 0.9893 | 0.4797 |
1.3604 | 7.36 | 2400 | 1.5221 | 0.9875 | 0.4463 |
1.1965 | 8.59 | 2800 | 1.5284 | 0.9766 | 0.4247 |
1.069 | 9.82 | 3200 | 1.5228 | 0.9672 | 0.4124 |
0.9536 | 11.04 | 3600 | 1.4059 | 0.9600 | 0.3868 |
0.8487 | 12.27 | 4000 | 1.4083 | 0.9501 | 0.3739 |
0.7655 | 13.5 | 4400 | 1.4079 | 0.9369 | 0.3612 |
0.6956 | 14.72 | 4800 | 1.4170 | 0.9411 | 0.3459 |
0.6287 | 15.95 | 5200 | 1.4000 | 0.9235 | 0.3384 |
0.561 | 17.18 | 5600 | 1.4735 | 0.9023 | 0.3295 |
0.5155 | 18.4 | 6000 | 1.5386 | 0.9202 | 0.3223 |
0.4864 | 19.63 | 6400 | 1.6186 | 0.9073 | 0.3259 |
0.4261 | 20.86 | 6800 | 1.6417 | 0.9217 | 0.3130 |
0.4051 | 22.09 | 7200 | 1.6295 | 0.8954 | 0.3026 |
0.3779 | 23.31 | 7600 | 1.8218 | 0.8979 | 0.3153 |
0.35 | 24.54 | 8000 | 1.7790 | 0.8921 | 0.3036 |
0.3343 | 25.77 | 8400 | 1.8588 | 0.9114 | 0.3072 |
0.3137 | 26.99 | 8800 | 1.8096 | 0.8756 | 0.2935 |
0.299 | 28.22 | 9200 | 1.9721 | 0.8863 | 0.3023 |
0.2894 | 29.45 | 9600 | 1.9907 | 0.8872 | 0.2958 |
0.2784 | 30.67 | 10000 | 1.9494 | 0.9090 | 0.2945 |
0.2662 | 31.9 | 10400 | 1.9952 | 0.8978 | 0.2935 |
0.2614 | 33.13 | 10800 | 2.0600 | 0.8949 | 0.2979 |
0.2401 | 34.36 | 11200 | 2.1180 | 0.8914 | 0.2950 |
0.2392 | 35.58 | 11600 | 2.1197 | 0.8713 | 0.2895 |
0.23 | 36.81 | 12000 | 2.1680 | 0.8713 | 0.2941 |
0.2246 | 38.04 | 12400 | 2.1526 | 0.8741 | 0.2879 |
0.2152 | 39.26 | 12800 | 2.2631 | 0.8790 | 0.2889 |
0.212 | 40.49 | 13200 | 2.2724 | 0.8661 | 0.2843 |
0.2044 | 41.72 | 13600 | 2.2438 | 0.8691 | 0.2878 |
0.2029 | 42.94 | 14000 | 2.2519 | 0.8577 | 0.2833 |
0.1972 | 44.17 | 14400 | 2.2697 | 0.8604 | 0.2813 |
0.1884 | 45.4 | 14800 | 2.3294 | 0.8662 | 0.2847 |
0.1877 | 46.63 | 15200 | 2.3077 | 0.8561 | 0.2793 |
0.1871 | 47.85 | 15600 | 2.3518 | 0.8563 | 0.2801 |
0.1838 | 49.08 | 16000 | 2.3462 | 0.8556 | 0.2799 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0