anton-l's picture
anton-l HF staff
Upload README.md
caba6c9
metadata
language:
  - sk
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - robust-speech-event
  - xlsr-fine-tuning-week
  - hf-asr-leaderboard
datasets:
  - common_voice
model-index:
  - name: Slovak comodoro Wav2Vec2 XLSR 300M CV8
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: sk
        metrics:
          - name: Test WER
            type: wer
            value: 49.6
          - name: Test CER
            type: cer
            value: 13.3
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sk
        metrics:
          - name: Test WER
            type: wer
            value: 81.7
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: sk
        metrics:
          - name: Test WER
            type: wer
            value: 80.26

wav2vec2-xls-r-300m-cs-cv8

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice 8.0 dataset. It achieves the following results on the evaluation set:

  • WER: 0.49575384615384616
  • CER: 0.13333333333333333

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8")
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-sk-cv8")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

The model can be evaluated using the attached eval.py script:

python eval.py --model_id comodoro/wav2vec2-xls-r-300m-sk-cv8 --dataset mozilla-foundation/common_voice_8_0 --split test --config sk

Training and evaluation data

The Common Voice 8.0 train and validation datasets were used for training

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-4
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 20
  • total_train_batch_size: 640
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0