commanderstrife's picture
update model card README.md
ac587c2
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilBERT_bio_pv_superset
    results: []

distilBERT_bio_pv_superset

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2328
  • Precision: 0.5462
  • Recall: 0.5325
  • F1: 0.5393
  • Accuracy: 0.9495

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0964 1.0 5467 0.1593 0.4625 0.3682 0.4100 0.9416
0.1918 2.0 10934 0.1541 0.4796 0.4658 0.4726 0.9436
0.0394 3.0 16401 0.1508 0.5349 0.4744 0.5028 0.9482
0.1207 4.0 21868 0.1615 0.5422 0.4953 0.5177 0.9490
0.0221 5.0 27335 0.1827 0.5377 0.5018 0.5191 0.9487
0.0629 6.0 32802 0.1874 0.5479 0.5130 0.5299 0.9493
0.0173 7.0 38269 0.2025 0.5388 0.5323 0.5356 0.9488
0.2603 8.0 43736 0.2148 0.5437 0.5397 0.5417 0.9493
0.0378 9.0 49203 0.2323 0.5430 0.5194 0.5310 0.9489
0.031 10.0 54670 0.2328 0.5462 0.5325 0.5393 0.9495

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1