metadata
license: mit
tags:
- generated_from_trainer
datasets:
- bc4chemd_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bc4chemd_ner-Bio_ClinicalBERT-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: bc4chemd_ner
type: bc4chemd_ner
args: bc4chemd
metrics:
- name: Precision
type: precision
value: 0.8944236722550557
- name: Recall
type: recall
value: 0.8777321865383098
- name: F1
type: f1
value: 0.8859993229654115
- name: Accuracy
type: accuracy
value: 0.9908228496683563
bc4chemd_ner-Bio_ClinicalBERT-finetuned-ner
This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the bc4chemd_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0641
- Precision: 0.8944
- Recall: 0.8777
- F1: 0.8860
- Accuracy: 0.9908
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.006 | 1.0 | 1918 | 0.0310 | 0.8697 | 0.8510 | 0.8602 | 0.9894 |
0.0097 | 2.0 | 3836 | 0.0345 | 0.8855 | 0.8637 | 0.8745 | 0.9898 |
0.0058 | 3.0 | 5754 | 0.0359 | 0.8733 | 0.8836 | 0.8784 | 0.9902 |
0.0014 | 4.0 | 7672 | 0.0440 | 0.8723 | 0.8842 | 0.8782 | 0.9903 |
0.0005 | 5.0 | 9590 | 0.0539 | 0.8862 | 0.8673 | 0.8766 | 0.9903 |
0.0001 | 6.0 | 11508 | 0.0558 | 0.8939 | 0.8628 | 0.8781 | 0.9904 |
0.0001 | 7.0 | 13426 | 0.0558 | 0.8846 | 0.8729 | 0.8787 | 0.9903 |
0.0012 | 8.0 | 15344 | 0.0635 | 0.8935 | 0.8696 | 0.8814 | 0.9905 |
0.0 | 9.0 | 17262 | 0.0624 | 0.8897 | 0.8831 | 0.8864 | 0.9908 |
0.0002 | 10.0 | 19180 | 0.0641 | 0.8944 | 0.8777 | 0.8860 | 0.9908 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1