comfyanonymous
commited on
Commit
•
e8b81d4
1
Parent(s):
0985cf7
Create convert.py
Browse files- convert.py +50 -0
convert.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import safetensors.torch
|
3 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
4 |
+
|
5 |
+
#https://huggingface.co/Laxhar/Freeway_Animation_HunYuan_Demo/blob/main/freeway_demo_ema_model/mp_rank_00_model_states.pt
|
6 |
+
input_diffusion = "mp_rank_00_model_states.pt"
|
7 |
+
|
8 |
+
#https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2/blob/main/t2i/clip_text_encoder/pytorch_model.bin
|
9 |
+
input_bert = "pytorch_model.bin"
|
10 |
+
|
11 |
+
#https://huggingface.co/stabilityai/sdxl-vae/blob/main/sdxl_vae.safetensors
|
12 |
+
# or
|
13 |
+
#https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/blob/main/sdxl_vae.safetensors
|
14 |
+
input_vae = "sdxl_vae.safetensors"
|
15 |
+
|
16 |
+
output = "freeway_animation_demo_hunyuan_dit.safetensors"
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
mt5 = T5EncoderModel.from_pretrained("google/mt5-xl").cuda()
|
21 |
+
tokenizer = T5Tokenizer.from_pretrained("google/mt5-xl")
|
22 |
+
|
23 |
+
sp_model = torch.ByteTensor(list(tokenizer.sp_model.serialized_model_proto()))
|
24 |
+
t5_sd = mt5.state_dict()
|
25 |
+
|
26 |
+
out_sd = {}
|
27 |
+
|
28 |
+
out_sd["text_encoders.mt5xl.spiece_model"] = sp_model
|
29 |
+
|
30 |
+
for k in t5_sd:
|
31 |
+
out_sd["text_encoders.mt5xl.transformer.{}".format(k)] = t5_sd[k].half()
|
32 |
+
|
33 |
+
bert_sd = torch.load(input_bert, weights_only=True)
|
34 |
+
for k in bert_sd:
|
35 |
+
if not k.startswith("visual."):
|
36 |
+
out_sd["text_encoders.hydit_clip.transformer.{}".format(k)] = bert_sd[k].half()
|
37 |
+
|
38 |
+
del bert_sd, mt5, t5_sd
|
39 |
+
|
40 |
+
hydit = torch.load(input_diffusion, weights_only=False)['ema']
|
41 |
+
for k in hydit:
|
42 |
+
out_sd["model.{}".format(k)] = hydit[k].half()
|
43 |
+
|
44 |
+
|
45 |
+
vae_sd = safetensors.torch.load_file(input_vae)
|
46 |
+
|
47 |
+
for k in vae_sd:
|
48 |
+
out_sd["vae.{}".format(k)] = vae_sd[k].half()
|
49 |
+
|
50 |
+
safetensors.torch.save_file(out_sd, output)
|