{ | |
"run_name": "hifigan", | |
"run_description": "universal hifigan trained on LibriTTS with no spectrogram normalization and using log() for scaling instead of log10()", | |
// AUDIO PARAMETERS | |
"audio":{ | |
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. | |
"win_length": 1024, // stft window length in ms. | |
"hop_length": 256, // stft window hop-lengh in ms. | |
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. | |
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. | |
// Audio processing parameters | |
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. | |
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. | |
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. | |
"log_func": "np.log", | |
// Silence trimming | |
"do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) | |
"trim_db": 60, // threshold for timming silence. Set this according to your dataset. | |
// MelSpectrogram parameters | |
"num_mels": 80, // size of the mel spec frame. | |
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! | |
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! | |
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram. | |
// Normalization parameters | |
"signal_norm": false, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. | |
"min_level_db": -100, // lower bound for normalization | |
"symmetric_norm": true, // move normalization to range [-1, 1] | |
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] | |
"clip_norm": true, // clip normalized values into the range. | |
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored | |
}, | |
// DISTRIBUTED TRAINING | |
"distributed":{ | |
"backend": "nccl", | |
"url": "tcp:\/\/localhost:54324" | |
}, | |
// MODEL PARAMETERS | |
"use_pqmf": false, | |
// LOSS PARAMETERS | |
"use_stft_loss": false, | |
"use_subband_stft_loss": false, | |
"use_mse_gan_loss": true, | |
"use_hinge_gan_loss": false, | |
"use_feat_match_loss": true, // use only with melgan discriminators | |
"use_l1_spec_loss": true, | |
// loss weights | |
"stft_loss_weight": 0, | |
"subband_stft_loss_weight": 0, | |
"mse_G_loss_weight": 1, | |
"hinge_G_loss_weight": 0, | |
"feat_match_loss_weight": 10, | |
"l1_spec_loss_weight": 45, | |
// multiscale stft loss parameters | |
// "stft_loss_params": { | |
// "n_ffts": [1024, 2048, 512], | |
// "hop_lengths": [120, 240, 50], | |
// "win_lengths": [600, 1200, 240] | |
// }, | |
"l1_spec_loss_params": { | |
"use_mel": true, | |
"sample_rate": 16000, | |
"n_fft": 1024, | |
"hop_length": 256, | |
"win_length": 1024, | |
"n_mels": 80, | |
"mel_fmin": 0.0, | |
"mel_fmax": null | |
}, | |
"target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch | |
// DISCRIMINATOR | |
"discriminator_model": "hifigan_discriminator", | |
//"discriminator_model_params":{ | |
// "peroids": [2, 3, 5, 7, 11], | |
// "base_channels": 16, | |
// "max_channels":512, | |
// "downsample_factors":[4, 4, 4] | |
//}, | |
"steps_to_start_discriminator": 0, // steps required to start GAN trainining.1 | |
// GENERATOR | |
"generator_model": "hifigan_generator", | |
"generator_model_params": { | |
"resblock_type": "1", | |
"upsample_factors": [8,8,2,2], | |
"upsample_kernel_sizes": [16,16,4,4], | |
"upsample_initial_channel": 128, | |
"resblock_kernel_sizes": [3,7,11], | |
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]] | |
}, | |
// DATASET | |
"data_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/vo_voice_quality_transformation/", | |
"feature_path": null, | |
// "feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/", | |
"seq_len": 8192, | |
"pad_short": 2000, | |
"conv_pad": 0, | |
"use_noise_augment": false, | |
"use_cache": true, | |
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. | |
// TRAINING | |
"batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. | |
// VALIDATION | |
"run_eval": true, | |
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. | |
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. | |
// OPTIMIZER | |
"epochs": 10000, // total number of epochs to train. | |
"wd": 0.0, // Weight decay weight. | |
"gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0 | |
"disc_clip_grad": -1, // Discriminator gradient clipping threshold. | |
// "lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate | |
// "lr_scheduler_gen_params": { | |
// "gamma": 0.999, | |
// "last_epoch": -1 | |
// }, | |
// "lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate | |
// "lr_scheduler_disc_params": { | |
// "gamma": 0.999, | |
// "last_epoch": -1 | |
// }, | |
"lr_gen": 0.00001, // Initial learning rate. If Noam decay is active, maximum learning rate. | |
"lr_disc": 0.00001, | |
// TENSORBOARD and LOGGING | |
"print_step": 25, // Number of steps to log traning on console. | |
"print_eval": false, // If True, it prints loss values for each step in eval run. | |
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints. | |
"checkpoint": true, // If true, it saves checkpoints per "save_step" | |
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. | |
// DATA LOADING | |
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. | |
"num_val_loader_workers": 4, // number of evaluation data loader processes. | |
"eval_split_size": 10, | |
// PATHS | |
"output_path": "/home/erogol/gdrive/Trainings/sam/" | |
} | |