cointegrated
commited on
Commit
·
0156ad2
1
Parent(s):
05b89f3
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ["ru"]
|
3 |
+
tags:
|
4 |
+
- russian
|
5 |
+
- classification
|
6 |
+
- sentiment
|
7 |
+
- multiclass
|
8 |
+
widget:
|
9 |
+
- text: "Какая гадость эта ваша заливная рыба!"
|
10 |
+
---
|
11 |
+
This is the [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) model fine-tuned for classification of sentiment for short Russian texts.
|
12 |
+
|
13 |
+
The problem is formulated as multiclass classification: `negative` vs `neutral` vs `positive`.
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
The function below estimates the sentiment of the given text:
|
17 |
+
```python
|
18 |
+
# !pip install transformers sentencepiece --quiet
|
19 |
+
import torch
|
20 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
21 |
+
|
22 |
+
model_checkpoint = 'cointegrated/rubert-tiny-sentiment-balanced'
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
24 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
25 |
+
if torch.cuda.is_available():
|
26 |
+
model.cuda()
|
27 |
+
|
28 |
+
def get_sentiment(text, return_type='label'):
|
29 |
+
""" Calculate sentiment of a text. `return_type` can be 'label', 'score' or 'proba' """
|
30 |
+
with torch.no_grad():
|
31 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
|
32 |
+
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()[0]
|
33 |
+
if return_type == 'label':
|
34 |
+
return model.config.id2label[proba.argmax()]
|
35 |
+
elif return_type == 'score':
|
36 |
+
return proba.dot([-1, 0, 1])
|
37 |
+
return proba
|
38 |
+
|
39 |
+
text = 'Какая гадость эта ваша заливная рыба!'
|
40 |
+
# classify the text
|
41 |
+
print(get_sentiment(text, 'label')) # negative
|
42 |
+
# score the text on the scale from -1 (very negative) to +1 (very positive)
|
43 |
+
print(get_sentiment(text, 'score')) # -0.5894946306943893
|
44 |
+
# calculate probabilities of all labels
|
45 |
+
print(get_sentiment(text, 'proba')) # [0.7870447 0.4947824 0.19755007]
|
46 |
+
```
|
47 |
+
|
48 |
+
## Training
|
49 |
+
|
50 |
+
We trained the model on [the datasets collected by Smetanin](https://github.com/sismetanin/sentiment-analysis-in-russian). We have converted all training data into a 3-class format and have up- and downsampled the training data to balance both the sources and the classes. The training code is available as [a Colab notebook](https://gist.github.com/avidale/e678c5478086c1d1adc52a85cb2b93e6). The metrics on the balanced test set are the following:
|
51 |
+
|
52 |
+
|
53 |
+
| Source | Macro F1 |
|
54 |
+
| ----------- | ----------- |
|
55 |
+
| SentiRuEval2016_banks | 0.83 |
|
56 |
+
| SentiRuEval2016_tele | 0.74 |
|
57 |
+
| kaggle_news | 0.66 |
|
58 |
+
| linis | 0.50 |
|
59 |
+
| mokoron | 0.98 |
|
60 |
+
| rureviews | 0.72 |
|
61 |
+
| rusentiment | 0.67 |
|
62 |
+
|