cointegrated commited on
Commit
0156ad2
·
1 Parent(s): 05b89f3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ["ru"]
3
+ tags:
4
+ - russian
5
+ - classification
6
+ - sentiment
7
+ - multiclass
8
+ widget:
9
+ - text: "Какая гадость эта ваша заливная рыба!"
10
+ ---
11
+ This is the [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) model fine-tuned for classification of sentiment for short Russian texts.
12
+
13
+ The problem is formulated as multiclass classification: `negative` vs `neutral` vs `positive`.
14
+ ## Usage
15
+
16
+ The function below estimates the sentiment of the given text:
17
+ ```python
18
+ # !pip install transformers sentencepiece --quiet
19
+ import torch
20
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
21
+
22
+ model_checkpoint = 'cointegrated/rubert-tiny-sentiment-balanced'
23
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
24
+ model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
25
+ if torch.cuda.is_available():
26
+ model.cuda()
27
+
28
+ def get_sentiment(text, return_type='label'):
29
+ """ Calculate sentiment of a text. `return_type` can be 'label', 'score' or 'proba' """
30
+ with torch.no_grad():
31
+ inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
32
+ proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()[0]
33
+ if return_type == 'label':
34
+ return model.config.id2label[proba.argmax()]
35
+ elif return_type == 'score':
36
+ return proba.dot([-1, 0, 1])
37
+ return proba
38
+
39
+ text = 'Какая гадость эта ваша заливная рыба!'
40
+ # classify the text
41
+ print(get_sentiment(text, 'label')) # negative
42
+ # score the text on the scale from -1 (very negative) to +1 (very positive)
43
+ print(get_sentiment(text, 'score')) # -0.5894946306943893
44
+ # calculate probabilities of all labels
45
+ print(get_sentiment(text, 'proba')) # [0.7870447 0.4947824 0.19755007]
46
+ ```
47
+
48
+ ## Training
49
+
50
+ We trained the model on [the datasets collected by Smetanin](https://github.com/sismetanin/sentiment-analysis-in-russian). We have converted all training data into a 3-class format and have up- and downsampled the training data to balance both the sources and the classes. The training code is available as [a Colab notebook](https://gist.github.com/avidale/e678c5478086c1d1adc52a85cb2b93e6). The metrics on the balanced test set are the following:
51
+
52
+
53
+ | Source | Macro F1 |
54
+ | ----------- | ----------- |
55
+ | SentiRuEval2016_banks | 0.83 |
56
+ | SentiRuEval2016_tele | 0.74 |
57
+ | kaggle_news | 0.66 |
58
+ | linis | 0.50 |
59
+ | mokoron | 0.98 |
60
+ | rureviews | 0.72 |
61
+ | rusentiment | 0.67 |
62
+