ehartford commited on
Commit
814a2bd
·
1 Parent(s): 0b2c1f4

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/WizardLM-Uncensored-falcon-40b",
3
+ "alibi": false,
4
+ "apply_residual_connection_post_layernorm": false,
5
+ "architectures": [
6
+ "RWForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_RW.RWConfig",
11
+ "AutoModelForCausalLM": "modelling_RW.RWForCausalLM"
12
+ },
13
+ "bias": false,
14
+ "bos_token_id": 1,
15
+ "eos_token_id": 2,
16
+ "hidden_dropout": 0.0,
17
+ "hidden_size": 8192,
18
+ "initializer_range": 0.02,
19
+ "layer_norm_epsilon": 1e-05,
20
+ "model_type": "RefinedWeb",
21
+ "n_head": 128,
22
+ "n_head_kv": 8,
23
+ "n_layer": 60,
24
+ "parallel_attn": true,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.30.0.dev0",
27
+ "use_cache": true,
28
+ "vocab_size": 65025
29
+ }
configuration_RW.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Bloom configuration"""
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class RWConfig(PretrainedConfig):
24
+ model_type = "RefinedWeb"
25
+ keys_to_ignore_at_inference = ["past_key_values"]
26
+ attribute_map = {
27
+ "num_hidden_layers": "n_layer",
28
+ "num_attention_heads": "n_head",
29
+ }
30
+
31
+ def __init__(
32
+ self,
33
+ vocab_size=250880,
34
+ hidden_size=64,
35
+ n_layer=2,
36
+ n_head=8,
37
+ layer_norm_epsilon=1e-5,
38
+ initializer_range=0.02,
39
+ use_cache=True,
40
+ bos_token_id=1,
41
+ eos_token_id=2,
42
+ apply_residual_connection_post_layernorm=False,
43
+ hidden_dropout=0.0,
44
+ attention_dropout=0.0,
45
+ n_head_kv=None,
46
+ alibi=False,
47
+ **kwargs,
48
+ ):
49
+ self.vocab_size = vocab_size
50
+ # Backward compatibility with n_embed kwarg
51
+ n_embed = kwargs.pop("n_embed", None)
52
+ self.hidden_size = hidden_size if n_embed is None else n_embed
53
+ self.n_layer = n_layer
54
+ self.n_head = n_head
55
+ self.layer_norm_epsilon = layer_norm_epsilon
56
+ self.initializer_range = initializer_range
57
+ self.use_cache = use_cache
58
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
59
+ self.hidden_dropout = hidden_dropout
60
+ self.attention_dropout = attention_dropout
61
+
62
+ self.bos_token_id = bos_token_id
63
+ self.eos_token_id = eos_token_id
64
+ self.n_head_kv = n_head if n_head_kv is None else n_head_kv
65
+ self.alibi = alibi
66
+
67
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
68
+
69
+ @property
70
+ def head_dim(self):
71
+ return self.hidden_size // self.n_head
72
+
73
+ @property
74
+ def rotary(self):
75
+ return not self.alibi
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.30.0.dev0"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step214
modelling_RW.py ADDED
@@ -0,0 +1,1106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # port of models described in RW
2
+ # We use the bloom model as a starting point for these model.
3
+ # Please refer to the bloom models for usage instructions.
4
+
5
+ import math
6
+ import warnings
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
13
+ from torch.nn import functional as F
14
+
15
+ from transformers.modeling_outputs import (
16
+ BaseModelOutputWithPastAndCrossAttentions,
17
+ CausalLMOutputWithCrossAttentions,
18
+ QuestionAnsweringModelOutput,
19
+ SequenceClassifierOutputWithPast,
20
+ TokenClassifierOutput,
21
+ )
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import logging
24
+ from .configuration_RW import RWConfig
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ # NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
29
+ # In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
30
+ class Linear(nn.Linear):
31
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
32
+ ret = input @ self.weight.T
33
+ if self.bias is None:
34
+ return ret
35
+ else:
36
+ return ret + self.bias
37
+
38
+
39
+ from einops import rearrange
40
+
41
+ # rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
42
+ def rotate_half(x):
43
+ x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
44
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in torch < 1.8.0
45
+
46
+
47
+ class RotaryEmbedding(torch.nn.Module):
48
+ """Implementation of RotaryEmbedding from GPT-NeoX.
49
+ This implementation is design to operate on queries and keys that are compatible with
50
+ [batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
51
+ """
52
+
53
+ def __init__(
54
+ self,
55
+ head_dim: int,
56
+ base=10000,
57
+ ):
58
+ super().__init__()
59
+ inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
60
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
61
+ self.head_dim = head_dim
62
+ self.seq_len_cached = None
63
+ self.batch_size_cached = None
64
+ self.cos_cached: torch.Tensor | None = None
65
+ self.sin_cached: torch.Tensor | None = None
66
+
67
+ def cos_sin(
68
+ self,
69
+ seq_len: int,
70
+ device="cuda",
71
+ dtype=torch.bfloat16,
72
+ ) -> torch.Tensor:
73
+ if seq_len != self.seq_len_cached:
74
+ self.seq_len_cached = seq_len
75
+ t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
76
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
77
+ emb = torch.cat((freqs, freqs), dim=-1).to(device)
78
+
79
+ if dtype in [torch.float16, torch.bfloat16]:
80
+ emb = emb.float()
81
+
82
+ self.cos_cached = emb.cos()[None, :, :]
83
+ self.sin_cached = emb.sin()[None, :, :]
84
+
85
+ self.cos_cached = self.cos_cached.type(dtype)
86
+ self.sin_cached = self.sin_cached.type(dtype)
87
+
88
+ return self.cos_cached, self.sin_cached
89
+
90
+ def forward(self, q, k):
91
+ batch, seq_len, head_dim = q.shape
92
+ cos, sin = self.cos_sin(seq_len, q.device, q.dtype)
93
+ return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
94
+
95
+
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
98
+ ) -> torch.BoolTensor:
99
+ batch_size, target_length = input_ids_shape
100
+ mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
101
+ # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
102
+ seq_ids = torch.arange(target_length, device=device)
103
+ mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
104
+
105
+ if past_key_values_length > 0:
106
+ mask[:, :past_key_values_length] = False
107
+
108
+ expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
109
+ return expanded_mask
110
+
111
+
112
+ def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
113
+ batch_size, src_length = mask.shape
114
+ tgt_length = tgt_length if tgt_length is not None else src_length
115
+
116
+ expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
117
+ return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
118
+
119
+
120
+ def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
121
+ batch_size, seq_length = attention_mask.shape
122
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
123
+ base = torch.tensor(
124
+ 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
125
+ )
126
+ powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
127
+ slopes = torch.pow(base, powers)
128
+
129
+ if closest_power_of_2 != num_heads:
130
+ extra_base = torch.tensor(
131
+ 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
132
+ )
133
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
134
+ extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
135
+ slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
136
+
137
+ # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
138
+ # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
139
+ # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
140
+ # => the query_length dimension will then be broadcasted correctly
141
+ # This is more or less identical to T5's relative position bias:
142
+ # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
143
+ arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
144
+ alibi = slopes[..., None].bfloat16() * arange_tensor
145
+ return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
146
+
147
+
148
+ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
149
+ out = F.dropout(x, p=prob, training=training)
150
+ out = residual + out
151
+ return out
152
+
153
+
154
+ class Attention(nn.Module):
155
+ def __init__(self, config: RWConfig):
156
+ super().__init__()
157
+
158
+ self.hidden_size = config.hidden_size
159
+ self.num_heads = config.n_head
160
+ self.head_dim = self.hidden_size // self.num_heads
161
+ self.split_size = self.hidden_size
162
+ self.hidden_dropout = config.hidden_dropout
163
+
164
+ if self.head_dim * self.num_heads != self.hidden_size:
165
+ raise ValueError(
166
+ f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
167
+ f" {self.num_heads})."
168
+ )
169
+
170
+ self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k)
171
+
172
+ # Layer-wise attention scaling
173
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
174
+ self.beta = self.inv_norm_factor
175
+
176
+ self.query_key_value = Linear(
177
+ self.hidden_size,
178
+ (config.n_head_kv * 2 + config.n_head) * self.head_dim,
179
+ bias=config.bias,
180
+ )
181
+ self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias)
182
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
183
+ self.num_kv = config.n_head_kv
184
+
185
+ def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
186
+ """
187
+ Split the last dimension into (num_heads, head_dim), results share same memory
188
+ storage as `fused_qkv`
189
+
190
+ Args:
191
+ fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
192
+
193
+ Returns:
194
+ query: [batch_size, seq_length, num_heads, head_dim]
195
+ key: [batch_size, seq_length, num_heads, head_dim]
196
+ value: [batch_size, seq_length, num_heads, head_dim]
197
+ """
198
+ batch, seq_len, _ = fused_qkv.shape
199
+ qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv + 2, 64)
200
+ q = qkv[:, :, :, :-2]
201
+ k = qkv[:, :, :, [-2]]
202
+ v = qkv[:, :, :, [-1]]
203
+ k = torch.broadcast_to(k, q.shape)
204
+ v = torch.broadcast_to(v, q.shape)
205
+
206
+ q, k, v = [
207
+ rearrange(
208
+ x,
209
+ "batch seq_len group num_heads head_dim ->\
210
+ batch seq_len (group num_heads) head_dim",
211
+ head_dim=self.head_dim,
212
+ )
213
+ for x in [q, k, v]
214
+ ]
215
+ return q, k, v
216
+
217
+ def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
218
+ """
219
+ Merge heads together over the last dimenstion
220
+
221
+ Args:
222
+ x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
223
+
224
+ Returns:
225
+ torch.tensor: [batch_size, seq_length, num_heads * head_dim]
226
+ """
227
+ # What we want to achieve is:
228
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
229
+ batch_size_and_num_heads, seq_length, _ = x.shape
230
+ batch_size = batch_size_and_num_heads // self.num_heads
231
+
232
+ # First view to decompose the batch size
233
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
234
+ x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
235
+
236
+ # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
237
+ x = x.permute(0, 2, 1, 3)
238
+
239
+ # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
240
+ return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
241
+
242
+ def forward(
243
+ self,
244
+ hidden_states: torch.Tensor,
245
+ alibi: torch.Tensor,
246
+ attention_mask: torch.Tensor,
247
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
248
+ head_mask: Optional[torch.Tensor] = None,
249
+ use_cache: bool = False,
250
+ output_attentions: bool = False,
251
+ ):
252
+ fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
253
+
254
+ # 3 x [batch_size, seq_length, num_heads, head_dim]
255
+ (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
256
+
257
+ batch_size, q_length, _, _ = query_layer.shape
258
+
259
+ query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
260
+ key_layer = key_layer.transpose(1, 2).reshape(
261
+ batch_size * self.num_heads,
262
+ q_length,
263
+ self.head_dim,
264
+ )
265
+ value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
266
+
267
+ query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
268
+
269
+ if layer_past is not None:
270
+ past_key, past_value = layer_past
271
+ # concatenate along seq_length dimension:
272
+ # - key: [batch_size * self.num_heads, head_dim, kv_length]
273
+ # - value: [batch_size * self.num_heads, kv_length, head_dim]
274
+ key_layer = torch.cat((past_key, key_layer), dim=1)
275
+ value_layer = torch.cat((past_value, value_layer), dim=1)
276
+
277
+ _, kv_length, _ = key_layer.shape
278
+
279
+ if use_cache is True:
280
+ present = (key_layer, value_layer)
281
+ else:
282
+ present = None
283
+
284
+ if alibi is None:
285
+ query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
286
+ key_layer_ = key_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
287
+ value_layer_ = value_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
288
+
289
+ attn_output = F.scaled_dot_product_attention(
290
+ query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
291
+ )
292
+
293
+ x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
294
+ x = x.permute(0, 2, 1, 3)
295
+ attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
296
+
297
+ output_tensor = self.dense(attn_output)
298
+
299
+ outputs = (output_tensor, present)
300
+ assert not output_attentions # not supported.
301
+ return outputs
302
+ else:
303
+ attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16)
304
+ matmul_result = query_layer @ key_layer.transpose(-1, -2)
305
+
306
+ # change view to [batch_size, num_heads, q_length, kv_length]
307
+ attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
308
+
309
+ # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
310
+ input_dtype = attention_scores.dtype
311
+ # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
312
+ if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
313
+ attention_scores = attention_scores.to(torch.float32)
314
+ # attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
315
+ attention_probs = F.softmax(
316
+ (attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)) * self.inv_norm_factor
317
+ + attention_mask_float,
318
+ dim=-1,
319
+ dtype=hidden_states.dtype,
320
+ )
321
+ # [batch_size, num_heads, q_length, kv_length]
322
+ attention_probs = self.attention_dropout(attention_probs)
323
+
324
+ if head_mask is not None:
325
+ attention_probs = attention_probs * head_mask
326
+
327
+ # change view [batch_size x num_heads, q_length, kv_length]
328
+ attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
329
+
330
+ # matmul: [batch_size * num_heads, q_length, head_dim]
331
+ context_layer = attention_probs_reshaped @ value_layer
332
+
333
+ # change view [batch_size, num_heads, q_length, head_dim]
334
+ context_layer = self._merge_heads(context_layer)
335
+
336
+ output_tensor = self.dense(context_layer)
337
+
338
+ outputs = (output_tensor, present)
339
+ if output_attentions:
340
+ outputs += (attention_probs,)
341
+
342
+ return outputs
343
+
344
+
345
+ class MLP(nn.Module):
346
+ def __init__(self, config: RWConfig):
347
+ super().__init__()
348
+ hidden_size = config.hidden_size
349
+
350
+ self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias)
351
+ self.act = nn.GELU()
352
+ self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias)
353
+ self.hidden_dropout = config.hidden_dropout
354
+
355
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
356
+ x = self.act(self.dense_h_to_4h(x))
357
+ x = self.dense_4h_to_h(x)
358
+ return x
359
+
360
+
361
+ class DecoderLayer(nn.Module):
362
+ def __init__(self, config: RWConfig):
363
+ super().__init__()
364
+ hidden_size = config.hidden_size
365
+
366
+ self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
367
+ self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
368
+
369
+ self.num_heads = config.n_head
370
+ self.self_attention = Attention(config)
371
+
372
+ self.mlp = MLP(config)
373
+
374
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
375
+ self.hidden_dropout = config.hidden_dropout
376
+
377
+ self.config = config
378
+
379
+ def forward(
380
+ self,
381
+ hidden_states: torch.Tensor,
382
+ alibi: torch.Tensor,
383
+ attention_mask: torch.Tensor,
384
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
385
+ head_mask: Optional[torch.Tensor] = None,
386
+ use_cache: bool = False,
387
+ output_attentions: bool = False,
388
+ ):
389
+
390
+ ln_attn = self.ln_attn(hidden_states)
391
+ ln_mlp = self.ln_mlp(hidden_states)
392
+
393
+ residual = hidden_states
394
+
395
+ # Self attention.
396
+ attn_outputs = self.self_attention(
397
+ ln_attn,
398
+ layer_past=layer_past,
399
+ attention_mask=attention_mask,
400
+ alibi=alibi,
401
+ head_mask=head_mask,
402
+ use_cache=use_cache,
403
+ output_attentions=output_attentions,
404
+ )
405
+
406
+ attention_output = attn_outputs[0]
407
+
408
+ outputs = attn_outputs[1:]
409
+
410
+ # MLP.
411
+ mlp_output = self.mlp(ln_mlp)
412
+
413
+ output = dropout_add(
414
+ mlp_output + attention_output, residual, self.config.hidden_dropout, training=self.training
415
+ )
416
+
417
+ if use_cache:
418
+ outputs = (output,) + outputs
419
+ else:
420
+ outputs = (output,) + outputs[1:]
421
+
422
+ return outputs # hidden_states, present, attentions
423
+
424
+
425
+ class RWPreTrainedModel(PreTrainedModel):
426
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
427
+ """
428
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
429
+ models.
430
+ """
431
+
432
+ config_class = RWConfig
433
+ base_model_prefix = "transformer"
434
+ supports_gradient_checkpointing = True
435
+ _no_split_modules = ["DecoderLayer"]
436
+
437
+ def __init__(self, *inputs, **kwargs):
438
+ super().__init__(*inputs, **kwargs)
439
+
440
+ def _init_weights(self, module: nn.Module):
441
+ """Initialize the weights."""
442
+ if isinstance(module, nn.Linear) or isinstance(module, Linear):
443
+ # Slightly different from the TF version which uses truncated_normal for initialization
444
+ # cf https://github.com/pytorch/pytorch/pull/5617
445
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
446
+ if module.bias is not None:
447
+ module.bias.data.zero_()
448
+ elif isinstance(module, nn.Embedding):
449
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
450
+ if module.padding_idx is not None:
451
+ module.weight.data[module.padding_idx].zero_()
452
+ elif isinstance(module, LayerNorm):
453
+ module.bias.data.zero_()
454
+ module.weight.data.fill_(1.0)
455
+
456
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
457
+ if isinstance(module, RWModel):
458
+ module.gradient_checkpointing = value
459
+
460
+ @staticmethod
461
+ def _convert_to_standard_cache(
462
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
463
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
464
+ """
465
+ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
466
+ num_heads, ...]))
467
+ """
468
+ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
469
+ num_heads = batch_size_times_num_heads // batch_size
470
+ # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
471
+ # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
472
+ return tuple(
473
+ (
474
+ layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
475
+ layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
476
+ )
477
+ for layer_past in past_key_value
478
+ )
479
+
480
+ @staticmethod
481
+ def _convert_to_rw_cache(
482
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
483
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
484
+ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
485
+ batch_size_times_num_heads = batch_size * num_heads
486
+ # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
487
+ # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
488
+ return tuple(
489
+ (
490
+ layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
491
+ layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
492
+ )
493
+ for layer_past in past_key_value
494
+ )
495
+
496
+
497
+ class RWModel(RWPreTrainedModel):
498
+ def __init__(self, config: RWConfig):
499
+ super().__init__(config)
500
+
501
+ self.embed_dim = config.hidden_size
502
+ self.num_heads = config.n_head
503
+ self.alibi = config.alibi
504
+
505
+ # Embedding + LN Embedding
506
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
507
+
508
+ # Transformer blocks
509
+ self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
510
+
511
+ # Final Layer Norm
512
+ self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
513
+
514
+ self.gradient_checkpointing = False
515
+
516
+ # Initialize weights and apply final processing
517
+ self.post_init()
518
+
519
+ def get_input_embeddings(self):
520
+ return self.word_embeddings
521
+
522
+ def _prepare_attn_mask(
523
+ self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
524
+ ) -> torch.BoolTensor:
525
+ # create causal mask
526
+ # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
527
+ combined_attention_mask = None
528
+ device = attention_mask.device
529
+ _, src_length = input_shape
530
+
531
+ if src_length > 1:
532
+ combined_attention_mask = _make_causal_mask(
533
+ input_shape, device=device, past_key_values_length=past_key_values_length
534
+ )
535
+
536
+ # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
537
+ expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
538
+ combined_attention_mask = (
539
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
540
+ )
541
+
542
+ return combined_attention_mask
543
+
544
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
545
+ self.word_embeddings = new_embeddings
546
+
547
+ def forward(
548
+ self,
549
+ input_ids: Optional[torch.LongTensor] = None,
550
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
551
+ attention_mask: Optional[torch.Tensor] = None,
552
+ head_mask: Optional[torch.LongTensor] = None,
553
+ inputs_embeds: Optional[torch.LongTensor] = None,
554
+ use_cache: Optional[bool] = None,
555
+ output_attentions: Optional[bool] = None,
556
+ output_hidden_states: Optional[bool] = None,
557
+ return_dict: Optional[bool] = None,
558
+ **deprecated_arguments,
559
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
560
+ if deprecated_arguments.pop("position_ids", False) is not False:
561
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
562
+ warnings.warn(
563
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
564
+ " passing `position_ids`.",
565
+ FutureWarning,
566
+ )
567
+ if len(deprecated_arguments) > 0:
568
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
569
+
570
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
571
+ output_hidden_states = (
572
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
573
+ )
574
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
575
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
576
+
577
+ if input_ids is not None and inputs_embeds is not None:
578
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
579
+ elif input_ids is not None:
580
+ batch_size, seq_length = input_ids.shape
581
+ elif inputs_embeds is not None:
582
+ batch_size, seq_length, _ = inputs_embeds.shape
583
+ else:
584
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
585
+
586
+ if past_key_values is None:
587
+ past_key_values = tuple([None] * len(self.h))
588
+
589
+ # Prepare head mask if needed
590
+ # 1.0 in head_mask indicate we keep the head
591
+ # attention_probs has shape batch_size x num_heads x N x N
592
+ # head_mask has shape n_layer x batch x num_heads x N x N
593
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
594
+
595
+ if inputs_embeds is None:
596
+ inputs_embeds = self.word_embeddings(input_ids)
597
+
598
+ hidden_states = inputs_embeds
599
+
600
+ presents = () if use_cache else None
601
+ all_self_attentions = () if output_attentions else None
602
+ all_hidden_states = () if output_hidden_states else None
603
+
604
+ # Compute alibi tensor: check build_alibi_tensor documentation
605
+ seq_length_with_past = seq_length
606
+ past_key_values_length = 0
607
+ if past_key_values[0] is not None:
608
+ past_key_values_length = past_key_values[0][0].shape[2]
609
+ seq_length_with_past = seq_length_with_past + past_key_values_length
610
+ if attention_mask is None:
611
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
612
+ else:
613
+ attention_mask = attention_mask.to(hidden_states.device)
614
+
615
+ if self.alibi:
616
+ alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
617
+ else:
618
+ alibi = None
619
+
620
+ causal_mask = self._prepare_attn_mask(
621
+ attention_mask,
622
+ input_shape=(batch_size, seq_length),
623
+ past_key_values_length=past_key_values_length,
624
+ )
625
+
626
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
627
+
628
+ if output_hidden_states:
629
+ all_hidden_states = all_hidden_states + (hidden_states,)
630
+
631
+ if self.gradient_checkpointing and self.training:
632
+
633
+ if use_cache:
634
+ logger.warning(
635
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
636
+ )
637
+ use_cache = False
638
+
639
+ def create_custom_forward(module):
640
+ def custom_forward(*inputs):
641
+ # None for past_key_value
642
+ return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
643
+
644
+ return custom_forward
645
+
646
+ outputs = torch.utils.checkpoint.checkpoint(
647
+ create_custom_forward(block),
648
+ hidden_states,
649
+ alibi,
650
+ causal_mask,
651
+ head_mask[i],
652
+ )
653
+ else:
654
+ outputs = block(
655
+ hidden_states,
656
+ layer_past=layer_past,
657
+ attention_mask=causal_mask,
658
+ head_mask=head_mask[i],
659
+ use_cache=use_cache,
660
+ output_attentions=output_attentions,
661
+ alibi=alibi,
662
+ )
663
+
664
+ hidden_states = outputs[0]
665
+ if use_cache is True:
666
+ presents = presents + (outputs[1],)
667
+
668
+ if output_attentions:
669
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
670
+
671
+ # Add last hidden state
672
+ hidden_states = self.ln_f(hidden_states)
673
+
674
+ if output_hidden_states:
675
+ all_hidden_states = all_hidden_states + (hidden_states,)
676
+
677
+ if not return_dict:
678
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
679
+
680
+ return BaseModelOutputWithPastAndCrossAttentions(
681
+ last_hidden_state=hidden_states,
682
+ past_key_values=presents,
683
+ hidden_states=all_hidden_states,
684
+ attentions=all_self_attentions,
685
+ )
686
+
687
+
688
+ class RWForCausalLM(RWPreTrainedModel):
689
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
690
+
691
+ def __init__(self, config: RWConfig):
692
+ super().__init__(config)
693
+ self.transformer = RWModel(config)
694
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
695
+
696
+ # Initialize weights and apply final processing
697
+ self.post_init()
698
+
699
+ def get_output_embeddings(self):
700
+ return self.lm_head
701
+
702
+ def set_output_embeddings(self, new_embeddings: torch.Tensor):
703
+ self.lm_head = new_embeddings
704
+
705
+ def prepare_inputs_for_generation(
706
+ self,
707
+ input_ids: torch.LongTensor,
708
+ past: Optional[torch.Tensor] = None,
709
+ attention_mask: Optional[torch.Tensor] = None,
710
+ **kwargs,
711
+ ) -> dict:
712
+ # only last token for input_ids if past is not None
713
+ if past:
714
+ input_ids = input_ids[:, -1].unsqueeze(-1)
715
+
716
+ # the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
717
+ if past[0][0].shape[0] == input_ids.shape[0]:
718
+ past = self._convert_to_rw_cache(past)
719
+
720
+ return {
721
+ "input_ids": input_ids,
722
+ "past_key_values": past,
723
+ "use_cache": kwargs.get("use_cache"),
724
+ "attention_mask": attention_mask,
725
+ }
726
+
727
+ def forward(
728
+ self,
729
+ input_ids: Optional[torch.LongTensor] = None,
730
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
731
+ attention_mask: Optional[torch.Tensor] = None,
732
+ head_mask: Optional[torch.Tensor] = None,
733
+ inputs_embeds: Optional[torch.Tensor] = None,
734
+ labels: Optional[torch.Tensor] = None,
735
+ use_cache: Optional[bool] = None,
736
+ output_attentions: Optional[bool] = None,
737
+ output_hidden_states: Optional[bool] = None,
738
+ return_dict: Optional[bool] = None,
739
+ **deprecated_arguments,
740
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
741
+ r"""
742
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
743
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
744
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
745
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
746
+ """
747
+ if deprecated_arguments.pop("position_ids", False) is not False:
748
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
749
+ warnings.warn(
750
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
751
+ " passing `position_ids`.",
752
+ FutureWarning,
753
+ )
754
+ if len(deprecated_arguments) > 0:
755
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
756
+
757
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
758
+
759
+ transformer_outputs = self.transformer(
760
+ input_ids,
761
+ past_key_values=past_key_values,
762
+ attention_mask=attention_mask,
763
+ head_mask=head_mask,
764
+ inputs_embeds=inputs_embeds,
765
+ use_cache=use_cache,
766
+ output_attentions=output_attentions,
767
+ output_hidden_states=output_hidden_states,
768
+ return_dict=return_dict,
769
+ )
770
+ hidden_states = transformer_outputs[0]
771
+
772
+ lm_logits = self.lm_head(hidden_states)
773
+
774
+ loss = None
775
+ if labels is not None:
776
+ # Shift so that tokens < n predict n
777
+ shift_logits = lm_logits[..., :-1, :].contiguous()
778
+ shift_labels = labels[..., 1:].contiguous()
779
+ batch_size, seq_length, vocab_size = shift_logits.shape
780
+ # Flatten the tokens
781
+ loss_fct = CrossEntropyLoss()
782
+ loss = loss_fct(
783
+ shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
784
+ )
785
+
786
+ if not return_dict:
787
+ output = (lm_logits,) + transformer_outputs[1:]
788
+ return ((loss,) + output) if loss is not None else output
789
+
790
+ return CausalLMOutputWithCrossAttentions(
791
+ loss=loss,
792
+ logits=lm_logits,
793
+ past_key_values=transformer_outputs.past_key_values,
794
+ hidden_states=transformer_outputs.hidden_states,
795
+ attentions=transformer_outputs.attentions,
796
+ )
797
+
798
+ def _reorder_cache(
799
+ self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
800
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
801
+ """
802
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
803
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
804
+ beam_idx at every generation step.
805
+
806
+ Output shares the same memory storage as `past`.
807
+ """
808
+ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
809
+
810
+ # Get a copy of `beam_idx` on all the devices where we need those indices.
811
+ device_to_beam_idx = {
812
+ past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
813
+ }
814
+ reordered_past = tuple(
815
+ (
816
+ layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
817
+ layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
818
+ )
819
+ for layer_past in standardized_past
820
+ )
821
+ return self._convert_to_rw_cache(reordered_past)
822
+
823
+
824
+ class RWForSequenceClassification(RWPreTrainedModel):
825
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
826
+
827
+ def __init__(self, config: RWConfig):
828
+ super().__init__(config)
829
+ self.num_labels = config.num_labels
830
+ self.transformer = RWModel(config)
831
+ self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
832
+
833
+ # Initialize weights and apply final processing
834
+ self.post_init()
835
+
836
+ def forward(
837
+ self,
838
+ input_ids: Optional[torch.LongTensor] = None,
839
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
840
+ attention_mask: Optional[torch.Tensor] = None,
841
+ head_mask: Optional[torch.Tensor] = None,
842
+ inputs_embeds: Optional[torch.Tensor] = None,
843
+ labels: Optional[torch.Tensor] = None,
844
+ use_cache: Optional[bool] = None,
845
+ output_attentions: Optional[bool] = None,
846
+ output_hidden_states: Optional[bool] = None,
847
+ return_dict: Optional[bool] = None,
848
+ **deprecated_arguments,
849
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
850
+ r"""
851
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
852
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
853
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
854
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
855
+ """
856
+ if deprecated_arguments.pop("position_ids", False) is not False:
857
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
858
+ warnings.warn(
859
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
860
+ " passing `position_ids`.",
861
+ FutureWarning,
862
+ )
863
+ if len(deprecated_arguments) > 0:
864
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
865
+
866
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
867
+
868
+ transformer_outputs = self.transformer(
869
+ input_ids,
870
+ past_key_values=past_key_values,
871
+ attention_mask=attention_mask,
872
+ head_mask=head_mask,
873
+ inputs_embeds=inputs_embeds,
874
+ use_cache=use_cache,
875
+ output_attentions=output_attentions,
876
+ output_hidden_states=output_hidden_states,
877
+ return_dict=return_dict,
878
+ )
879
+
880
+ hidden_states = transformer_outputs[0]
881
+ logits = self.score(hidden_states)
882
+
883
+ if input_ids is not None:
884
+ batch_size = input_ids.shape[0]
885
+ else:
886
+ batch_size = inputs_embeds.shape[0]
887
+
888
+ if self.config.pad_token_id is None and batch_size != 1:
889
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
890
+ if self.config.pad_token_id is None:
891
+ sequence_lengths = -1
892
+ else:
893
+ if input_ids is not None:
894
+ sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
895
+ else:
896
+ sequence_lengths = -1
897
+ logger.warning(
898
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
899
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
900
+ )
901
+
902
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
903
+
904
+ loss = None
905
+ if labels is not None:
906
+ if self.config.problem_type is None:
907
+ if self.num_labels == 1:
908
+ self.config.problem_type = "regression"
909
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
910
+ self.config.problem_type = "single_label_classification"
911
+ else:
912
+ self.config.problem_type = "multi_label_classification"
913
+
914
+ if self.config.problem_type == "regression":
915
+ loss_fct = MSELoss()
916
+ if self.num_labels == 1:
917
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
918
+ else:
919
+ loss = loss_fct(pooled_logits, labels)
920
+ elif self.config.problem_type == "single_label_classification":
921
+ loss_fct = CrossEntropyLoss()
922
+ loss = loss_fct(pooled_logits, labels)
923
+ elif self.config.problem_type == "multi_label_classification":
924
+ loss_fct = BCEWithLogitsLoss()
925
+ loss = loss_fct(pooled_logits, labels)
926
+ if not return_dict:
927
+ output = (pooled_logits,) + transformer_outputs[1:]
928
+ return ((loss,) + output) if loss is not None else output
929
+
930
+ return SequenceClassifierOutputWithPast(
931
+ loss=loss,
932
+ logits=pooled_logits,
933
+ past_key_values=transformer_outputs.past_key_values,
934
+ hidden_states=transformer_outputs.hidden_states,
935
+ attentions=transformer_outputs.attentions,
936
+ )
937
+
938
+
939
+ class RWForTokenClassification(RWPreTrainedModel):
940
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
941
+
942
+ def __init__(self, config: RWConfig):
943
+ super().__init__(config)
944
+ self.num_labels = config.num_labels
945
+
946
+ self.transformer = RWModel(config)
947
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
948
+ classifier_dropout = config.classifier_dropout
949
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
950
+ classifier_dropout = config.hidden_dropout
951
+ else:
952
+ classifier_dropout = 0.1
953
+ self.dropout = nn.Dropout(classifier_dropout)
954
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
955
+
956
+ # Initialize weights and apply final processing
957
+ self.post_init()
958
+
959
+ def forward(
960
+ self,
961
+ input_ids: Optional[torch.LongTensor] = None,
962
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
963
+ attention_mask: Optional[torch.Tensor] = None,
964
+ head_mask: Optional[torch.Tensor] = None,
965
+ inputs_embeds: Optional[torch.Tensor] = None,
966
+ labels: Optional[torch.Tensor] = None,
967
+ use_cache: Optional[bool] = None,
968
+ output_attentions: Optional[bool] = None,
969
+ output_hidden_states: Optional[bool] = None,
970
+ return_dict: Optional[bool] = None,
971
+ **deprecated_arguments,
972
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
973
+ r"""
974
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
975
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
976
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
977
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
978
+ """
979
+ if deprecated_arguments.pop("position_ids", False) is not False:
980
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
981
+ warnings.warn(
982
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
983
+ " passing `position_ids`.",
984
+ FutureWarning,
985
+ )
986
+ if len(deprecated_arguments) > 0:
987
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
988
+
989
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
990
+
991
+ transformer_outputs = self.transformer(
992
+ input_ids,
993
+ past_key_values=past_key_values,
994
+ attention_mask=attention_mask,
995
+ head_mask=head_mask,
996
+ inputs_embeds=inputs_embeds,
997
+ use_cache=use_cache,
998
+ output_attentions=output_attentions,
999
+ output_hidden_states=output_hidden_states,
1000
+ return_dict=return_dict,
1001
+ )
1002
+
1003
+ hidden_states = transformer_outputs[0]
1004
+ hidden_states = self.dropout(hidden_states)
1005
+ logits = self.classifier(hidden_states)
1006
+
1007
+ loss = None
1008
+ if labels is not None:
1009
+ batch_size, seq_length = labels.shape
1010
+ loss_fct = CrossEntropyLoss()
1011
+ loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
1012
+
1013
+ if not return_dict:
1014
+ output = (logits,) + transformer_outputs[2:]
1015
+ return ((loss,) + output) if loss is not None else output
1016
+
1017
+ return TokenClassifierOutput(
1018
+ loss=loss,
1019
+ logits=logits,
1020
+ hidden_states=transformer_outputs.hidden_states,
1021
+ attentions=transformer_outputs.attentions,
1022
+ )
1023
+
1024
+
1025
+ class RWForQuestionAnswering(RWPreTrainedModel):
1026
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
1027
+
1028
+ def __init__(self, config):
1029
+ super().__init__(config)
1030
+ self.transformer = RWModel(config)
1031
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1032
+
1033
+ # Initialize weights and apply final processing
1034
+ self.post_init()
1035
+
1036
+ def forward(
1037
+ self,
1038
+ input_ids: Optional[torch.LongTensor] = None,
1039
+ attention_mask: Optional[torch.FloatTensor] = None,
1040
+ position_ids: Optional[torch.LongTensor] = None,
1041
+ head_mask: Optional[torch.FloatTensor] = None,
1042
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1043
+ start_positions: Optional[torch.LongTensor] = None,
1044
+ end_positions: Optional[torch.LongTensor] = None,
1045
+ output_attentions: Optional[bool] = None,
1046
+ output_hidden_states: Optional[bool] = None,
1047
+ return_dict: Optional[bool] = None,
1048
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1049
+ r"""
1050
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1051
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1052
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1053
+ are not taken into account for computing the loss.
1054
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1055
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1056
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1057
+ are not taken into account for computing the loss.
1058
+ """
1059
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1060
+
1061
+ outputs = self.transformer(
1062
+ input_ids,
1063
+ attention_mask=attention_mask,
1064
+ position_ids=position_ids,
1065
+ head_mask=head_mask,
1066
+ inputs_embeds=inputs_embeds,
1067
+ output_attentions=output_attentions,
1068
+ output_hidden_states=output_hidden_states,
1069
+ return_dict=return_dict,
1070
+ )
1071
+
1072
+ sequence_output = outputs[0]
1073
+
1074
+ logits = self.qa_outputs(sequence_output)
1075
+ start_logits, end_logits = logits.split(1, dim=-1)
1076
+ start_logits = start_logits.squeeze(-1).contiguous()
1077
+ end_logits = end_logits.squeeze(-1).contiguous()
1078
+
1079
+ total_loss = None
1080
+ if start_positions is not None and end_positions is not None:
1081
+ # If we are on multi-GPU, split add a dimension
1082
+ if len(start_positions.size()) > 1:
1083
+ start_positions = start_positions.squeeze(-1)
1084
+ if len(end_positions.size()) > 1:
1085
+ end_positions = end_positions.squeeze(-1)
1086
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1087
+ ignored_index = start_logits.size(1)
1088
+ start_positions = start_positions.clamp(0, ignored_index)
1089
+ end_positions = end_positions.clamp(0, ignored_index)
1090
+
1091
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1092
+ start_loss = loss_fct(start_logits, start_positions)
1093
+ end_loss = loss_fct(end_logits, end_positions)
1094
+ total_loss = (start_loss + end_loss) / 2
1095
+
1096
+ if not return_dict:
1097
+ output = (start_logits, end_logits) + outputs[2:]
1098
+ return ((total_loss,) + output) if total_loss is not None else output
1099
+
1100
+ return QuestionAnsweringModelOutput(
1101
+ loss=total_loss,
1102
+ start_logits=start_logits,
1103
+ end_logits=end_logits,
1104
+ hidden_states=outputs.hidden_states,
1105
+ attentions=outputs.attentions,
1106
+ )
pytorch_model-00001-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:770439505668e74fd22664afe2307c3fa6c3d46a54bf19b0b8ef1b68e738ba00
3
+ size 9211125767
pytorch_model-00002-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34837514af4f79495f44376ac0b24678b7fb55d13e076a6554326c7c1b366d1f
3
+ size 9798428805
pytorch_model-00003-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:518c4c73654e8a27fa10a5004f5291e9daad50b7f77095478e2610da8d595a6f
3
+ size 9227870553
pytorch_model-00004-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da40ea2abb4fba88c95cf5de79e635460646c73ee72be08dc070c1f7ac80e17b
3
+ size 9798428869
pytorch_model-00005-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03438aa4ecaa7e7d4cc074b28e84da4fdf91a8f34c6bb7a2c1c3642c42da9f5
3
+ size 9227870617
pytorch_model-00006-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df7866835f8249f66161362826af6476bd5660b34df14028d1410844ea0bb202
3
+ size 9798428869
pytorch_model-00007-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37cffd3abd8a5db306118f84a95dbbe99e65531a654a94376eaa61a4a10f38c8
3
+ size 9227870617
pytorch_model-00008-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f579ed55df0c8b0aaf3adddc38c9d3f7ad867183b488168a01ce24889c8092f8
3
+ size 9798428869
pytorch_model-00009-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a63313464c68b6f0a3429c49ba891c4a97cb7a3025d54edf26ffc3594f635a7c
3
+ size 9227870617
pytorch_model-00010-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33069ed9465646bd3d25133bf6d4907df231bede4fd5d310446e1715f91f2f5a
3
+ size 9798428869
pytorch_model-00011-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74b1316102ac0994fd07ebd230ff0a252896520733707c7333fe505f71dd5465
3
+ size 9227870617
pytorch_model-00012-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d91dec3759c87d5c64ce8cf4694342e301631e772359741b863a8db5954004
3
+ size 9798428869
pytorch_model-00013-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd07f1c13ba2eea37fa55c0517599b5fd68ee9b2173aa557e11c665f5b6a8678
3
+ size 9227870617
pytorch_model-00014-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f95d4d7885f5f15668550e7e4956088936d86243f77123c99249d64aaa462e29
3
+ size 9798428869
pytorch_model-00015-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff358398d8aa23a9e666eebd0567151eefa96a7b6cff41c23fbf9f311b27ac8d
3
+ size 9227870617
pytorch_model-00016-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99b1244597d1a396d2d9c516ec9e312bba37c88876e060b4e1484fbb1156682a
3
+ size 9798428869
pytorch_model-00017-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af1f84068f582a67ebecc9e9b64be2bd63faf94b7e91c4e851c80f7865b39e4
3
+ size 9227870617
pytorch_model-00018-of-00018.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5269964738f900cc327187d5bc5ce9c76f26572b8a8cce842f2a9cf9ee973a56
3
+ size 5922590931
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 167343947776
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00018-of-00018.bin",
7
+ "transformer.h.0.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
8
+ "transformer.h.0.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
9
+ "transformer.h.0.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
10
+ "transformer.h.0.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
11
+ "transformer.h.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00018.bin",
12
+ "transformer.h.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
13
+ "transformer.h.0.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
14
+ "transformer.h.0.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
15
+ "transformer.h.1.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
16
+ "transformer.h.1.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
17
+ "transformer.h.1.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
18
+ "transformer.h.1.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
19
+ "transformer.h.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00018.bin",
20
+ "transformer.h.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
21
+ "transformer.h.1.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
22
+ "transformer.h.1.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
23
+ "transformer.h.10.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
24
+ "transformer.h.10.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
25
+ "transformer.h.10.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
26
+ "transformer.h.10.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
27
+ "transformer.h.10.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
28
+ "transformer.h.10.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
29
+ "transformer.h.10.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
30
+ "transformer.h.10.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
31
+ "transformer.h.11.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
32
+ "transformer.h.11.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
33
+ "transformer.h.11.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
34
+ "transformer.h.11.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
35
+ "transformer.h.11.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
36
+ "transformer.h.11.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
37
+ "transformer.h.11.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
38
+ "transformer.h.11.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
39
+ "transformer.h.12.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
40
+ "transformer.h.12.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
41
+ "transformer.h.12.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
42
+ "transformer.h.12.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
43
+ "transformer.h.12.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
44
+ "transformer.h.12.mlp.dense_h_to_4h.weight": "pytorch_model-00004-of-00018.bin",
45
+ "transformer.h.12.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
46
+ "transformer.h.12.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
47
+ "transformer.h.13.ln_attn.bias": "pytorch_model-00004-of-00018.bin",
48
+ "transformer.h.13.ln_attn.weight": "pytorch_model-00004-of-00018.bin",
49
+ "transformer.h.13.ln_mlp.bias": "pytorch_model-00004-of-00018.bin",
50
+ "transformer.h.13.ln_mlp.weight": "pytorch_model-00004-of-00018.bin",
51
+ "transformer.h.13.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
52
+ "transformer.h.13.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
53
+ "transformer.h.13.self_attention.dense.weight": "pytorch_model-00004-of-00018.bin",
54
+ "transformer.h.13.self_attention.query_key_value.weight": "pytorch_model-00004-of-00018.bin",
55
+ "transformer.h.14.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
56
+ "transformer.h.14.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
57
+ "transformer.h.14.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
58
+ "transformer.h.14.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
59
+ "transformer.h.14.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
60
+ "transformer.h.14.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
61
+ "transformer.h.14.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
62
+ "transformer.h.14.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
63
+ "transformer.h.15.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
64
+ "transformer.h.15.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
65
+ "transformer.h.15.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
66
+ "transformer.h.15.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
67
+ "transformer.h.15.mlp.dense_4h_to_h.weight": "pytorch_model-00005-of-00018.bin",
68
+ "transformer.h.15.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
69
+ "transformer.h.15.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
70
+ "transformer.h.15.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
71
+ "transformer.h.16.ln_attn.bias": "pytorch_model-00005-of-00018.bin",
72
+ "transformer.h.16.ln_attn.weight": "pytorch_model-00005-of-00018.bin",
73
+ "transformer.h.16.ln_mlp.bias": "pytorch_model-00005-of-00018.bin",
74
+ "transformer.h.16.ln_mlp.weight": "pytorch_model-00005-of-00018.bin",
75
+ "transformer.h.16.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
76
+ "transformer.h.16.mlp.dense_h_to_4h.weight": "pytorch_model-00005-of-00018.bin",
77
+ "transformer.h.16.self_attention.dense.weight": "pytorch_model-00005-of-00018.bin",
78
+ "transformer.h.16.self_attention.query_key_value.weight": "pytorch_model-00005-of-00018.bin",
79
+ "transformer.h.17.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
80
+ "transformer.h.17.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
81
+ "transformer.h.17.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
82
+ "transformer.h.17.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
83
+ "transformer.h.17.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
84
+ "transformer.h.17.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
85
+ "transformer.h.17.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
86
+ "transformer.h.17.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
87
+ "transformer.h.18.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
88
+ "transformer.h.18.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
89
+ "transformer.h.18.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
90
+ "transformer.h.18.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
91
+ "transformer.h.18.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
92
+ "transformer.h.18.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
93
+ "transformer.h.18.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
94
+ "transformer.h.18.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
95
+ "transformer.h.19.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
96
+ "transformer.h.19.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
97
+ "transformer.h.19.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
98
+ "transformer.h.19.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
99
+ "transformer.h.19.mlp.dense_4h_to_h.weight": "pytorch_model-00006-of-00018.bin",
100
+ "transformer.h.19.mlp.dense_h_to_4h.weight": "pytorch_model-00006-of-00018.bin",
101
+ "transformer.h.19.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
102
+ "transformer.h.19.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
103
+ "transformer.h.2.ln_attn.bias": "pytorch_model-00001-of-00018.bin",
104
+ "transformer.h.2.ln_attn.weight": "pytorch_model-00001-of-00018.bin",
105
+ "transformer.h.2.ln_mlp.bias": "pytorch_model-00001-of-00018.bin",
106
+ "transformer.h.2.ln_mlp.weight": "pytorch_model-00001-of-00018.bin",
107
+ "transformer.h.2.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
108
+ "transformer.h.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00018.bin",
109
+ "transformer.h.2.self_attention.dense.weight": "pytorch_model-00001-of-00018.bin",
110
+ "transformer.h.2.self_attention.query_key_value.weight": "pytorch_model-00001-of-00018.bin",
111
+ "transformer.h.20.ln_attn.bias": "pytorch_model-00006-of-00018.bin",
112
+ "transformer.h.20.ln_attn.weight": "pytorch_model-00006-of-00018.bin",
113
+ "transformer.h.20.ln_mlp.bias": "pytorch_model-00006-of-00018.bin",
114
+ "transformer.h.20.ln_mlp.weight": "pytorch_model-00006-of-00018.bin",
115
+ "transformer.h.20.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
116
+ "transformer.h.20.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
117
+ "transformer.h.20.self_attention.dense.weight": "pytorch_model-00006-of-00018.bin",
118
+ "transformer.h.20.self_attention.query_key_value.weight": "pytorch_model-00006-of-00018.bin",
119
+ "transformer.h.21.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
120
+ "transformer.h.21.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
121
+ "transformer.h.21.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
122
+ "transformer.h.21.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
123
+ "transformer.h.21.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
124
+ "transformer.h.21.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
125
+ "transformer.h.21.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
126
+ "transformer.h.21.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
127
+ "transformer.h.22.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
128
+ "transformer.h.22.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
129
+ "transformer.h.22.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
130
+ "transformer.h.22.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
131
+ "transformer.h.22.mlp.dense_4h_to_h.weight": "pytorch_model-00007-of-00018.bin",
132
+ "transformer.h.22.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
133
+ "transformer.h.22.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
134
+ "transformer.h.22.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
135
+ "transformer.h.23.ln_attn.bias": "pytorch_model-00007-of-00018.bin",
136
+ "transformer.h.23.ln_attn.weight": "pytorch_model-00007-of-00018.bin",
137
+ "transformer.h.23.ln_mlp.bias": "pytorch_model-00007-of-00018.bin",
138
+ "transformer.h.23.ln_mlp.weight": "pytorch_model-00007-of-00018.bin",
139
+ "transformer.h.23.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
140
+ "transformer.h.23.mlp.dense_h_to_4h.weight": "pytorch_model-00007-of-00018.bin",
141
+ "transformer.h.23.self_attention.dense.weight": "pytorch_model-00007-of-00018.bin",
142
+ "transformer.h.23.self_attention.query_key_value.weight": "pytorch_model-00007-of-00018.bin",
143
+ "transformer.h.24.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
144
+ "transformer.h.24.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
145
+ "transformer.h.24.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
146
+ "transformer.h.24.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
147
+ "transformer.h.24.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
148
+ "transformer.h.24.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
149
+ "transformer.h.24.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
150
+ "transformer.h.24.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
151
+ "transformer.h.25.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
152
+ "transformer.h.25.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
153
+ "transformer.h.25.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
154
+ "transformer.h.25.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
155
+ "transformer.h.25.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
156
+ "transformer.h.25.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
157
+ "transformer.h.25.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
158
+ "transformer.h.25.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
159
+ "transformer.h.26.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
160
+ "transformer.h.26.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
161
+ "transformer.h.26.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
162
+ "transformer.h.26.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
163
+ "transformer.h.26.mlp.dense_4h_to_h.weight": "pytorch_model-00008-of-00018.bin",
164
+ "transformer.h.26.mlp.dense_h_to_4h.weight": "pytorch_model-00008-of-00018.bin",
165
+ "transformer.h.26.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
166
+ "transformer.h.26.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
167
+ "transformer.h.27.ln_attn.bias": "pytorch_model-00008-of-00018.bin",
168
+ "transformer.h.27.ln_attn.weight": "pytorch_model-00008-of-00018.bin",
169
+ "transformer.h.27.ln_mlp.bias": "pytorch_model-00008-of-00018.bin",
170
+ "transformer.h.27.ln_mlp.weight": "pytorch_model-00008-of-00018.bin",
171
+ "transformer.h.27.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
172
+ "transformer.h.27.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
173
+ "transformer.h.27.self_attention.dense.weight": "pytorch_model-00008-of-00018.bin",
174
+ "transformer.h.27.self_attention.query_key_value.weight": "pytorch_model-00008-of-00018.bin",
175
+ "transformer.h.28.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
176
+ "transformer.h.28.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
177
+ "transformer.h.28.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
178
+ "transformer.h.28.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
179
+ "transformer.h.28.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
180
+ "transformer.h.28.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
181
+ "transformer.h.28.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
182
+ "transformer.h.28.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
183
+ "transformer.h.29.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
184
+ "transformer.h.29.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
185
+ "transformer.h.29.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
186
+ "transformer.h.29.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
187
+ "transformer.h.29.mlp.dense_4h_to_h.weight": "pytorch_model-00009-of-00018.bin",
188
+ "transformer.h.29.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
189
+ "transformer.h.29.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
190
+ "transformer.h.29.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
191
+ "transformer.h.3.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
192
+ "transformer.h.3.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
193
+ "transformer.h.3.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
194
+ "transformer.h.3.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
195
+ "transformer.h.3.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
196
+ "transformer.h.3.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
197
+ "transformer.h.3.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
198
+ "transformer.h.3.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
199
+ "transformer.h.30.ln_attn.bias": "pytorch_model-00009-of-00018.bin",
200
+ "transformer.h.30.ln_attn.weight": "pytorch_model-00009-of-00018.bin",
201
+ "transformer.h.30.ln_mlp.bias": "pytorch_model-00009-of-00018.bin",
202
+ "transformer.h.30.ln_mlp.weight": "pytorch_model-00009-of-00018.bin",
203
+ "transformer.h.30.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
204
+ "transformer.h.30.mlp.dense_h_to_4h.weight": "pytorch_model-00009-of-00018.bin",
205
+ "transformer.h.30.self_attention.dense.weight": "pytorch_model-00009-of-00018.bin",
206
+ "transformer.h.30.self_attention.query_key_value.weight": "pytorch_model-00009-of-00018.bin",
207
+ "transformer.h.31.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
208
+ "transformer.h.31.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
209
+ "transformer.h.31.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
210
+ "transformer.h.31.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
211
+ "transformer.h.31.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
212
+ "transformer.h.31.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
213
+ "transformer.h.31.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
214
+ "transformer.h.31.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
215
+ "transformer.h.32.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
216
+ "transformer.h.32.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
217
+ "transformer.h.32.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
218
+ "transformer.h.32.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
219
+ "transformer.h.32.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
220
+ "transformer.h.32.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
221
+ "transformer.h.32.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
222
+ "transformer.h.32.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
223
+ "transformer.h.33.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
224
+ "transformer.h.33.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
225
+ "transformer.h.33.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
226
+ "transformer.h.33.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
227
+ "transformer.h.33.mlp.dense_4h_to_h.weight": "pytorch_model-00010-of-00018.bin",
228
+ "transformer.h.33.mlp.dense_h_to_4h.weight": "pytorch_model-00010-of-00018.bin",
229
+ "transformer.h.33.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
230
+ "transformer.h.33.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
231
+ "transformer.h.34.ln_attn.bias": "pytorch_model-00010-of-00018.bin",
232
+ "transformer.h.34.ln_attn.weight": "pytorch_model-00010-of-00018.bin",
233
+ "transformer.h.34.ln_mlp.bias": "pytorch_model-00010-of-00018.bin",
234
+ "transformer.h.34.ln_mlp.weight": "pytorch_model-00010-of-00018.bin",
235
+ "transformer.h.34.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
236
+ "transformer.h.34.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
237
+ "transformer.h.34.self_attention.dense.weight": "pytorch_model-00010-of-00018.bin",
238
+ "transformer.h.34.self_attention.query_key_value.weight": "pytorch_model-00010-of-00018.bin",
239
+ "transformer.h.35.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
240
+ "transformer.h.35.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
241
+ "transformer.h.35.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
242
+ "transformer.h.35.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
243
+ "transformer.h.35.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
244
+ "transformer.h.35.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
245
+ "transformer.h.35.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
246
+ "transformer.h.35.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
247
+ "transformer.h.36.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
248
+ "transformer.h.36.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
249
+ "transformer.h.36.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
250
+ "transformer.h.36.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
251
+ "transformer.h.36.mlp.dense_4h_to_h.weight": "pytorch_model-00011-of-00018.bin",
252
+ "transformer.h.36.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
253
+ "transformer.h.36.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
254
+ "transformer.h.36.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
255
+ "transformer.h.37.ln_attn.bias": "pytorch_model-00011-of-00018.bin",
256
+ "transformer.h.37.ln_attn.weight": "pytorch_model-00011-of-00018.bin",
257
+ "transformer.h.37.ln_mlp.bias": "pytorch_model-00011-of-00018.bin",
258
+ "transformer.h.37.ln_mlp.weight": "pytorch_model-00011-of-00018.bin",
259
+ "transformer.h.37.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
260
+ "transformer.h.37.mlp.dense_h_to_4h.weight": "pytorch_model-00011-of-00018.bin",
261
+ "transformer.h.37.self_attention.dense.weight": "pytorch_model-00011-of-00018.bin",
262
+ "transformer.h.37.self_attention.query_key_value.weight": "pytorch_model-00011-of-00018.bin",
263
+ "transformer.h.38.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
264
+ "transformer.h.38.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
265
+ "transformer.h.38.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
266
+ "transformer.h.38.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
267
+ "transformer.h.38.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
268
+ "transformer.h.38.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
269
+ "transformer.h.38.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
270
+ "transformer.h.38.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
271
+ "transformer.h.39.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
272
+ "transformer.h.39.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
273
+ "transformer.h.39.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
274
+ "transformer.h.39.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
275
+ "transformer.h.39.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
276
+ "transformer.h.39.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
277
+ "transformer.h.39.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
278
+ "transformer.h.39.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
279
+ "transformer.h.4.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
280
+ "transformer.h.4.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
281
+ "transformer.h.4.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
282
+ "transformer.h.4.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
283
+ "transformer.h.4.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
284
+ "transformer.h.4.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
285
+ "transformer.h.4.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
286
+ "transformer.h.4.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
287
+ "transformer.h.40.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
288
+ "transformer.h.40.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
289
+ "transformer.h.40.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
290
+ "transformer.h.40.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
291
+ "transformer.h.40.mlp.dense_4h_to_h.weight": "pytorch_model-00012-of-00018.bin",
292
+ "transformer.h.40.mlp.dense_h_to_4h.weight": "pytorch_model-00012-of-00018.bin",
293
+ "transformer.h.40.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
294
+ "transformer.h.40.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
295
+ "transformer.h.41.ln_attn.bias": "pytorch_model-00012-of-00018.bin",
296
+ "transformer.h.41.ln_attn.weight": "pytorch_model-00012-of-00018.bin",
297
+ "transformer.h.41.ln_mlp.bias": "pytorch_model-00012-of-00018.bin",
298
+ "transformer.h.41.ln_mlp.weight": "pytorch_model-00012-of-00018.bin",
299
+ "transformer.h.41.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
300
+ "transformer.h.41.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
301
+ "transformer.h.41.self_attention.dense.weight": "pytorch_model-00012-of-00018.bin",
302
+ "transformer.h.41.self_attention.query_key_value.weight": "pytorch_model-00012-of-00018.bin",
303
+ "transformer.h.42.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
304
+ "transformer.h.42.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
305
+ "transformer.h.42.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
306
+ "transformer.h.42.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
307
+ "transformer.h.42.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
308
+ "transformer.h.42.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
309
+ "transformer.h.42.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
310
+ "transformer.h.42.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
311
+ "transformer.h.43.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
312
+ "transformer.h.43.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
313
+ "transformer.h.43.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
314
+ "transformer.h.43.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
315
+ "transformer.h.43.mlp.dense_4h_to_h.weight": "pytorch_model-00013-of-00018.bin",
316
+ "transformer.h.43.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
317
+ "transformer.h.43.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
318
+ "transformer.h.43.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
319
+ "transformer.h.44.ln_attn.bias": "pytorch_model-00013-of-00018.bin",
320
+ "transformer.h.44.ln_attn.weight": "pytorch_model-00013-of-00018.bin",
321
+ "transformer.h.44.ln_mlp.bias": "pytorch_model-00013-of-00018.bin",
322
+ "transformer.h.44.ln_mlp.weight": "pytorch_model-00013-of-00018.bin",
323
+ "transformer.h.44.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
324
+ "transformer.h.44.mlp.dense_h_to_4h.weight": "pytorch_model-00013-of-00018.bin",
325
+ "transformer.h.44.self_attention.dense.weight": "pytorch_model-00013-of-00018.bin",
326
+ "transformer.h.44.self_attention.query_key_value.weight": "pytorch_model-00013-of-00018.bin",
327
+ "transformer.h.45.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
328
+ "transformer.h.45.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
329
+ "transformer.h.45.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
330
+ "transformer.h.45.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
331
+ "transformer.h.45.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
332
+ "transformer.h.45.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
333
+ "transformer.h.45.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
334
+ "transformer.h.45.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
335
+ "transformer.h.46.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
336
+ "transformer.h.46.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
337
+ "transformer.h.46.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
338
+ "transformer.h.46.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
339
+ "transformer.h.46.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
340
+ "transformer.h.46.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
341
+ "transformer.h.46.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
342
+ "transformer.h.46.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
343
+ "transformer.h.47.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
344
+ "transformer.h.47.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
345
+ "transformer.h.47.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
346
+ "transformer.h.47.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
347
+ "transformer.h.47.mlp.dense_4h_to_h.weight": "pytorch_model-00014-of-00018.bin",
348
+ "transformer.h.47.mlp.dense_h_to_4h.weight": "pytorch_model-00014-of-00018.bin",
349
+ "transformer.h.47.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
350
+ "transformer.h.47.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
351
+ "transformer.h.48.ln_attn.bias": "pytorch_model-00014-of-00018.bin",
352
+ "transformer.h.48.ln_attn.weight": "pytorch_model-00014-of-00018.bin",
353
+ "transformer.h.48.ln_mlp.bias": "pytorch_model-00014-of-00018.bin",
354
+ "transformer.h.48.ln_mlp.weight": "pytorch_model-00014-of-00018.bin",
355
+ "transformer.h.48.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
356
+ "transformer.h.48.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
357
+ "transformer.h.48.self_attention.dense.weight": "pytorch_model-00014-of-00018.bin",
358
+ "transformer.h.48.self_attention.query_key_value.weight": "pytorch_model-00014-of-00018.bin",
359
+ "transformer.h.49.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
360
+ "transformer.h.49.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
361
+ "transformer.h.49.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
362
+ "transformer.h.49.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
363
+ "transformer.h.49.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
364
+ "transformer.h.49.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
365
+ "transformer.h.49.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
366
+ "transformer.h.49.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
367
+ "transformer.h.5.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
368
+ "transformer.h.5.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
369
+ "transformer.h.5.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
370
+ "transformer.h.5.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
371
+ "transformer.h.5.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00018.bin",
372
+ "transformer.h.5.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00018.bin",
373
+ "transformer.h.5.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
374
+ "transformer.h.5.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
375
+ "transformer.h.50.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
376
+ "transformer.h.50.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
377
+ "transformer.h.50.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
378
+ "transformer.h.50.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
379
+ "transformer.h.50.mlp.dense_4h_to_h.weight": "pytorch_model-00015-of-00018.bin",
380
+ "transformer.h.50.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
381
+ "transformer.h.50.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
382
+ "transformer.h.50.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
383
+ "transformer.h.51.ln_attn.bias": "pytorch_model-00015-of-00018.bin",
384
+ "transformer.h.51.ln_attn.weight": "pytorch_model-00015-of-00018.bin",
385
+ "transformer.h.51.ln_mlp.bias": "pytorch_model-00015-of-00018.bin",
386
+ "transformer.h.51.ln_mlp.weight": "pytorch_model-00015-of-00018.bin",
387
+ "transformer.h.51.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
388
+ "transformer.h.51.mlp.dense_h_to_4h.weight": "pytorch_model-00015-of-00018.bin",
389
+ "transformer.h.51.self_attention.dense.weight": "pytorch_model-00015-of-00018.bin",
390
+ "transformer.h.51.self_attention.query_key_value.weight": "pytorch_model-00015-of-00018.bin",
391
+ "transformer.h.52.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
392
+ "transformer.h.52.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
393
+ "transformer.h.52.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
394
+ "transformer.h.52.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
395
+ "transformer.h.52.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
396
+ "transformer.h.52.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
397
+ "transformer.h.52.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
398
+ "transformer.h.52.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
399
+ "transformer.h.53.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
400
+ "transformer.h.53.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
401
+ "transformer.h.53.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
402
+ "transformer.h.53.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
403
+ "transformer.h.53.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
404
+ "transformer.h.53.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
405
+ "transformer.h.53.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
406
+ "transformer.h.53.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
407
+ "transformer.h.54.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
408
+ "transformer.h.54.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
409
+ "transformer.h.54.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
410
+ "transformer.h.54.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
411
+ "transformer.h.54.mlp.dense_4h_to_h.weight": "pytorch_model-00016-of-00018.bin",
412
+ "transformer.h.54.mlp.dense_h_to_4h.weight": "pytorch_model-00016-of-00018.bin",
413
+ "transformer.h.54.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
414
+ "transformer.h.54.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
415
+ "transformer.h.55.ln_attn.bias": "pytorch_model-00016-of-00018.bin",
416
+ "transformer.h.55.ln_attn.weight": "pytorch_model-00016-of-00018.bin",
417
+ "transformer.h.55.ln_mlp.bias": "pytorch_model-00016-of-00018.bin",
418
+ "transformer.h.55.ln_mlp.weight": "pytorch_model-00016-of-00018.bin",
419
+ "transformer.h.55.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
420
+ "transformer.h.55.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
421
+ "transformer.h.55.self_attention.dense.weight": "pytorch_model-00016-of-00018.bin",
422
+ "transformer.h.55.self_attention.query_key_value.weight": "pytorch_model-00016-of-00018.bin",
423
+ "transformer.h.56.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
424
+ "transformer.h.56.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
425
+ "transformer.h.56.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
426
+ "transformer.h.56.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
427
+ "transformer.h.56.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
428
+ "transformer.h.56.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
429
+ "transformer.h.56.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
430
+ "transformer.h.56.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
431
+ "transformer.h.57.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
432
+ "transformer.h.57.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
433
+ "transformer.h.57.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
434
+ "transformer.h.57.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
435
+ "transformer.h.57.mlp.dense_4h_to_h.weight": "pytorch_model-00017-of-00018.bin",
436
+ "transformer.h.57.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
437
+ "transformer.h.57.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
438
+ "transformer.h.57.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
439
+ "transformer.h.58.ln_attn.bias": "pytorch_model-00017-of-00018.bin",
440
+ "transformer.h.58.ln_attn.weight": "pytorch_model-00017-of-00018.bin",
441
+ "transformer.h.58.ln_mlp.bias": "pytorch_model-00017-of-00018.bin",
442
+ "transformer.h.58.ln_mlp.weight": "pytorch_model-00017-of-00018.bin",
443
+ "transformer.h.58.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00018.bin",
444
+ "transformer.h.58.mlp.dense_h_to_4h.weight": "pytorch_model-00017-of-00018.bin",
445
+ "transformer.h.58.self_attention.dense.weight": "pytorch_model-00017-of-00018.bin",
446
+ "transformer.h.58.self_attention.query_key_value.weight": "pytorch_model-00017-of-00018.bin",
447
+ "transformer.h.59.ln_attn.bias": "pytorch_model-00018-of-00018.bin",
448
+ "transformer.h.59.ln_attn.weight": "pytorch_model-00018-of-00018.bin",
449
+ "transformer.h.59.ln_mlp.bias": "pytorch_model-00018-of-00018.bin",
450
+ "transformer.h.59.ln_mlp.weight": "pytorch_model-00018-of-00018.bin",
451
+ "transformer.h.59.mlp.dense_4h_to_h.weight": "pytorch_model-00018-of-00018.bin",
452
+ "transformer.h.59.mlp.dense_h_to_4h.weight": "pytorch_model-00018-of-00018.bin",
453
+ "transformer.h.59.self_attention.dense.weight": "pytorch_model-00018-of-00018.bin",
454
+ "transformer.h.59.self_attention.query_key_value.weight": "pytorch_model-00018-of-00018.bin",
455
+ "transformer.h.6.ln_attn.bias": "pytorch_model-00002-of-00018.bin",
456
+ "transformer.h.6.ln_attn.weight": "pytorch_model-00002-of-00018.bin",
457
+ "transformer.h.6.ln_mlp.bias": "pytorch_model-00002-of-00018.bin",
458
+ "transformer.h.6.ln_mlp.weight": "pytorch_model-00002-of-00018.bin",
459
+ "transformer.h.6.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
460
+ "transformer.h.6.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
461
+ "transformer.h.6.self_attention.dense.weight": "pytorch_model-00002-of-00018.bin",
462
+ "transformer.h.6.self_attention.query_key_value.weight": "pytorch_model-00002-of-00018.bin",
463
+ "transformer.h.7.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
464
+ "transformer.h.7.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
465
+ "transformer.h.7.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
466
+ "transformer.h.7.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
467
+ "transformer.h.7.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
468
+ "transformer.h.7.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
469
+ "transformer.h.7.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
470
+ "transformer.h.7.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
471
+ "transformer.h.8.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
472
+ "transformer.h.8.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
473
+ "transformer.h.8.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
474
+ "transformer.h.8.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
475
+ "transformer.h.8.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00018.bin",
476
+ "transformer.h.8.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
477
+ "transformer.h.8.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
478
+ "transformer.h.8.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
479
+ "transformer.h.9.ln_attn.bias": "pytorch_model-00003-of-00018.bin",
480
+ "transformer.h.9.ln_attn.weight": "pytorch_model-00003-of-00018.bin",
481
+ "transformer.h.9.ln_mlp.bias": "pytorch_model-00003-of-00018.bin",
482
+ "transformer.h.9.ln_mlp.weight": "pytorch_model-00003-of-00018.bin",
483
+ "transformer.h.9.mlp.dense_4h_to_h.weight": "pytorch_model-00004-of-00018.bin",
484
+ "transformer.h.9.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00018.bin",
485
+ "transformer.h.9.self_attention.dense.weight": "pytorch_model-00003-of-00018.bin",
486
+ "transformer.h.9.self_attention.query_key_value.weight": "pytorch_model-00003-of-00018.bin",
487
+ "transformer.ln_f.bias": "pytorch_model-00018-of-00018.bin",
488
+ "transformer.ln_f.weight": "pytorch_model-00018-of-00018.bin",
489
+ "transformer.word_embeddings.weight": "pytorch_model-00001-of-00018.bin"
490
+ }
491
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ ">>TITLE<<",
4
+ ">>ABSTRACT<<",
5
+ ">>INTRODUCTION<<",
6
+ ">>SUMMARY<<",
7
+ ">>COMMENT<<",
8
+ ">>ANSWER<<",
9
+ ">>QUESTION<<",
10
+ ">>DOMAIN<<",
11
+ ">>PREFIX<<",
12
+ ">>SUFFIX<<",
13
+ ">>MIDDLE<<"
14
+ ],
15
+ "eos_token": "<|endoftext|>",
16
+ "pad_token": "[PAD]"
17
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "clean_up_tokenization_spaces": true,
4
+ "eos_token": "<|endoftext|>",
5
+ "model_max_length": 2048,
6
+ "padding_side": "right",
7
+ "tokenizer_class": "PreTrainedTokenizerFast"
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9930151338766007,
5
+ "global_step": 214,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "learning_rate": 2e-05,
13
+ "loss": 0.8616,
14
+ "step": 2
15
+ },
16
+ {
17
+ "epoch": 0.04,
18
+ "learning_rate": 1.9995608365087945e-05,
19
+ "loss": 0.7122,
20
+ "step": 4
21
+ },
22
+ {
23
+ "epoch": 0.06,
24
+ "learning_rate": 1.9982437317643218e-05,
25
+ "loss": 0.6609,
26
+ "step": 6
27
+ },
28
+ {
29
+ "epoch": 0.07,
30
+ "learning_rate": 1.996049842615217e-05,
31
+ "loss": 0.6289,
32
+ "step": 8
33
+ },
34
+ {
35
+ "epoch": 0.09,
36
+ "learning_rate": 1.992981096013517e-05,
37
+ "loss": 0.6091,
38
+ "step": 10
39
+ },
40
+ {
41
+ "epoch": 0.11,
42
+ "learning_rate": 1.9890401873221642e-05,
43
+ "loss": 0.5863,
44
+ "step": 12
45
+ },
46
+ {
47
+ "epoch": 0.13,
48
+ "learning_rate": 1.984230577947597e-05,
49
+ "loss": 0.5834,
50
+ "step": 14
51
+ },
52
+ {
53
+ "epoch": 0.15,
54
+ "learning_rate": 1.9785564922995042e-05,
55
+ "loss": 0.5628,
56
+ "step": 16
57
+ },
58
+ {
59
+ "epoch": 0.17,
60
+ "learning_rate": 1.972022914080411e-05,
61
+ "loss": 0.5446,
62
+ "step": 18
63
+ },
64
+ {
65
+ "epoch": 0.19,
66
+ "learning_rate": 1.964635581908359e-05,
67
+ "loss": 0.5434,
68
+ "step": 20
69
+ },
70
+ {
71
+ "epoch": 0.2,
72
+ "learning_rate": 1.9564009842765225e-05,
73
+ "loss": 0.5196,
74
+ "step": 22
75
+ },
76
+ {
77
+ "epoch": 0.22,
78
+ "learning_rate": 1.9473263538541916e-05,
79
+ "loss": 0.5292,
80
+ "step": 24
81
+ },
82
+ {
83
+ "epoch": 0.24,
84
+ "learning_rate": 1.9374196611341212e-05,
85
+ "loss": 0.5139,
86
+ "step": 26
87
+ },
88
+ {
89
+ "epoch": 0.26,
90
+ "learning_rate": 1.9266896074318335e-05,
91
+ "loss": 0.5088,
92
+ "step": 28
93
+ },
94
+ {
95
+ "epoch": 0.28,
96
+ "learning_rate": 1.9151456172430186e-05,
97
+ "loss": 0.5079,
98
+ "step": 30
99
+ },
100
+ {
101
+ "epoch": 0.3,
102
+ "learning_rate": 1.9027978299657436e-05,
103
+ "loss": 0.5086,
104
+ "step": 32
105
+ },
106
+ {
107
+ "epoch": 0.32,
108
+ "learning_rate": 1.8896570909947477e-05,
109
+ "loss": 0.5024,
110
+ "step": 34
111
+ },
112
+ {
113
+ "epoch": 0.34,
114
+ "learning_rate": 1.875734942195637e-05,
115
+ "loss": 0.5046,
116
+ "step": 36
117
+ },
118
+ {
119
+ "epoch": 0.35,
120
+ "learning_rate": 1.8610436117673557e-05,
121
+ "loss": 0.4777,
122
+ "step": 38
123
+ },
124
+ {
125
+ "epoch": 0.37,
126
+ "learning_rate": 1.845596003501826e-05,
127
+ "loss": 0.5006,
128
+ "step": 40
129
+ },
130
+ {
131
+ "epoch": 0.39,
132
+ "learning_rate": 1.829405685450202e-05,
133
+ "loss": 0.4796,
134
+ "step": 42
135
+ },
136
+ {
137
+ "epoch": 0.41,
138
+ "learning_rate": 1.8124868780056814e-05,
139
+ "loss": 0.4701,
140
+ "step": 44
141
+ },
142
+ {
143
+ "epoch": 0.43,
144
+ "learning_rate": 1.7948544414133534e-05,
145
+ "loss": 0.4784,
146
+ "step": 46
147
+ },
148
+ {
149
+ "epoch": 0.45,
150
+ "learning_rate": 1.7765238627180424e-05,
151
+ "loss": 0.4773,
152
+ "step": 48
153
+ },
154
+ {
155
+ "epoch": 0.47,
156
+ "learning_rate": 1.7575112421616203e-05,
157
+ "loss": 0.4783,
158
+ "step": 50
159
+ },
160
+ {
161
+ "epoch": 0.48,
162
+ "learning_rate": 1.7378332790417275e-05,
163
+ "loss": 0.4772,
164
+ "step": 52
165
+ },
166
+ {
167
+ "epoch": 0.5,
168
+ "learning_rate": 1.717507257044331e-05,
169
+ "loss": 0.4671,
170
+ "step": 54
171
+ },
172
+ {
173
+ "epoch": 0.52,
174
+ "learning_rate": 1.6965510290629973e-05,
175
+ "loss": 0.4716,
176
+ "step": 56
177
+ },
178
+ {
179
+ "epoch": 0.54,
180
+ "learning_rate": 1.6749830015182106e-05,
181
+ "loss": 0.4539,
182
+ "step": 58
183
+ },
184
+ {
185
+ "epoch": 0.56,
186
+ "learning_rate": 1.6528221181905217e-05,
187
+ "loss": 0.4613,
188
+ "step": 60
189
+ },
190
+ {
191
+ "epoch": 0.58,
192
+ "learning_rate": 1.6300878435817115e-05,
193
+ "loss": 0.4758,
194
+ "step": 62
195
+ },
196
+ {
197
+ "epoch": 0.6,
198
+ "learning_rate": 1.6068001458185934e-05,
199
+ "loss": 0.4623,
200
+ "step": 64
201
+ },
202
+ {
203
+ "epoch": 0.61,
204
+ "learning_rate": 1.5829794791144723e-05,
205
+ "loss": 0.4734,
206
+ "step": 66
207
+ },
208
+ {
209
+ "epoch": 0.63,
210
+ "learning_rate": 1.5586467658036526e-05,
211
+ "loss": 0.4512,
212
+ "step": 68
213
+ },
214
+ {
215
+ "epoch": 0.65,
216
+ "learning_rate": 1.533823377964791e-05,
217
+ "loss": 0.4713,
218
+ "step": 70
219
+ },
220
+ {
221
+ "epoch": 0.67,
222
+ "learning_rate": 1.5085311186492206e-05,
223
+ "loss": 0.4789,
224
+ "step": 72
225
+ },
226
+ {
227
+ "epoch": 0.69,
228
+ "learning_rate": 1.482792202730745e-05,
229
+ "loss": 0.5663,
230
+ "step": 74
231
+ },
232
+ {
233
+ "epoch": 0.71,
234
+ "learning_rate": 1.4566292373937133e-05,
235
+ "loss": 0.4551,
236
+ "step": 76
237
+ },
238
+ {
239
+ "epoch": 0.73,
240
+ "learning_rate": 1.4300652022765207e-05,
241
+ "loss": 0.461,
242
+ "step": 78
243
+ },
244
+ {
245
+ "epoch": 0.75,
246
+ "learning_rate": 1.4031234292879726e-05,
247
+ "loss": 0.4673,
248
+ "step": 80
249
+ },
250
+ {
251
+ "epoch": 0.76,
252
+ "learning_rate": 1.3758275821142382e-05,
253
+ "loss": 0.4589,
254
+ "step": 82
255
+ },
256
+ {
257
+ "epoch": 0.78,
258
+ "learning_rate": 1.348201635434399e-05,
259
+ "loss": 0.4495,
260
+ "step": 84
261
+ },
262
+ {
263
+ "epoch": 0.8,
264
+ "learning_rate": 1.3202698538628376e-05,
265
+ "loss": 0.4645,
266
+ "step": 86
267
+ },
268
+ {
269
+ "epoch": 0.82,
270
+ "learning_rate": 1.292056770636976e-05,
271
+ "loss": 0.4555,
272
+ "step": 88
273
+ },
274
+ {
275
+ "epoch": 0.84,
276
+ "learning_rate": 1.2635871660690677e-05,
277
+ "loss": 0.4464,
278
+ "step": 90
279
+ },
280
+ {
281
+ "epoch": 0.86,
282
+ "learning_rate": 1.234886045780984e-05,
283
+ "loss": 0.4646,
284
+ "step": 92
285
+ },
286
+ {
287
+ "epoch": 0.88,
288
+ "learning_rate": 1.2059786187410984e-05,
289
+ "loss": 0.4599,
290
+ "step": 94
291
+ },
292
+ {
293
+ "epoch": 0.89,
294
+ "learning_rate": 1.176890275122573e-05,
295
+ "loss": 0.4534,
296
+ "step": 96
297
+ },
298
+ {
299
+ "epoch": 0.91,
300
+ "learning_rate": 1.1476465640024814e-05,
301
+ "loss": 0.4744,
302
+ "step": 98
303
+ },
304
+ {
305
+ "epoch": 0.93,
306
+ "learning_rate": 1.1182731709213658e-05,
307
+ "loss": 0.4626,
308
+ "step": 100
309
+ },
310
+ {
311
+ "epoch": 0.95,
312
+ "learning_rate": 1.0887958953229349e-05,
313
+ "loss": 0.4407,
314
+ "step": 102
315
+ },
316
+ {
317
+ "epoch": 0.97,
318
+ "learning_rate": 1.0592406278937143e-05,
319
+ "loss": 0.452,
320
+ "step": 104
321
+ },
322
+ {
323
+ "epoch": 0.99,
324
+ "learning_rate": 1.0296333278225599e-05,
325
+ "loss": 0.4496,
326
+ "step": 106
327
+ },
328
+ {
329
+ "epoch": 1.01,
330
+ "learning_rate": 1e-05,
331
+ "loss": 0.4138,
332
+ "step": 108
333
+ },
334
+ {
335
+ "epoch": 1.02,
336
+ "learning_rate": 9.703666721774403e-06,
337
+ "loss": 0.2924,
338
+ "step": 110
339
+ },
340
+ {
341
+ "epoch": 1.04,
342
+ "learning_rate": 9.407593721062858e-06,
343
+ "loss": 0.3184,
344
+ "step": 112
345
+ },
346
+ {
347
+ "epoch": 1.06,
348
+ "learning_rate": 9.112041046770653e-06,
349
+ "loss": 0.2885,
350
+ "step": 114
351
+ },
352
+ {
353
+ "epoch": 1.08,
354
+ "learning_rate": 8.817268290786343e-06,
355
+ "loss": 0.2842,
356
+ "step": 116
357
+ },
358
+ {
359
+ "epoch": 1.1,
360
+ "learning_rate": 8.52353435997519e-06,
361
+ "loss": 0.2763,
362
+ "step": 118
363
+ },
364
+ {
365
+ "epoch": 1.12,
366
+ "learning_rate": 8.231097248774273e-06,
367
+ "loss": 0.2765,
368
+ "step": 120
369
+ },
370
+ {
371
+ "epoch": 1.14,
372
+ "learning_rate": 7.940213812589018e-06,
373
+ "loss": 0.2788,
374
+ "step": 122
375
+ },
376
+ {
377
+ "epoch": 1.15,
378
+ "learning_rate": 7.651139542190164e-06,
379
+ "loss": 0.2821,
380
+ "step": 124
381
+ },
382
+ {
383
+ "epoch": 1.17,
384
+ "learning_rate": 7.364128339309326e-06,
385
+ "loss": 0.2834,
386
+ "step": 126
387
+ },
388
+ {
389
+ "epoch": 1.19,
390
+ "learning_rate": 7.079432293630244e-06,
391
+ "loss": 0.2728,
392
+ "step": 128
393
+ },
394
+ {
395
+ "epoch": 1.21,
396
+ "learning_rate": 6.797301461371626e-06,
397
+ "loss": 0.274,
398
+ "step": 130
399
+ },
400
+ {
401
+ "epoch": 1.23,
402
+ "learning_rate": 6.517983645656014e-06,
403
+ "loss": 0.276,
404
+ "step": 132
405
+ },
406
+ {
407
+ "epoch": 1.25,
408
+ "learning_rate": 6.241724178857621e-06,
409
+ "loss": 0.2723,
410
+ "step": 134
411
+ },
412
+ {
413
+ "epoch": 1.27,
414
+ "learning_rate": 5.96876570712028e-06,
415
+ "loss": 0.2876,
416
+ "step": 136
417
+ },
418
+ {
419
+ "epoch": 1.29,
420
+ "learning_rate": 5.699347977234799e-06,
421
+ "loss": 0.2714,
422
+ "step": 138
423
+ },
424
+ {
425
+ "epoch": 1.3,
426
+ "learning_rate": 5.43370762606287e-06,
427
+ "loss": 0.2758,
428
+ "step": 140
429
+ },
430
+ {
431
+ "epoch": 1.32,
432
+ "learning_rate": 5.172077972692553e-06,
433
+ "loss": 0.2816,
434
+ "step": 142
435
+ },
436
+ {
437
+ "epoch": 1.34,
438
+ "learning_rate": 4.914688813507798e-06,
439
+ "loss": 0.2787,
440
+ "step": 144
441
+ },
442
+ {
443
+ "epoch": 1.36,
444
+ "learning_rate": 4.661766220352098e-06,
445
+ "loss": 0.2801,
446
+ "step": 146
447
+ },
448
+ {
449
+ "epoch": 1.38,
450
+ "learning_rate": 4.413532341963477e-06,
451
+ "loss": 0.271,
452
+ "step": 148
453
+ },
454
+ {
455
+ "epoch": 1.4,
456
+ "learning_rate": 4.170205208855281e-06,
457
+ "loss": 0.2708,
458
+ "step": 150
459
+ },
460
+ {
461
+ "epoch": 1.42,
462
+ "learning_rate": 3.931998541814069e-06,
463
+ "loss": 0.2728,
464
+ "step": 152
465
+ },
466
+ {
467
+ "epoch": 1.43,
468
+ "learning_rate": 3.6991215641828903e-06,
469
+ "loss": 0.2719,
470
+ "step": 154
471
+ },
472
+ {
473
+ "epoch": 1.45,
474
+ "learning_rate": 3.4717788180947855e-06,
475
+ "loss": 0.272,
476
+ "step": 156
477
+ },
478
+ {
479
+ "epoch": 1.47,
480
+ "learning_rate": 3.250169984817897e-06,
481
+ "loss": 0.2724,
482
+ "step": 158
483
+ },
484
+ {
485
+ "epoch": 1.49,
486
+ "learning_rate": 3.0344897093700333e-06,
487
+ "loss": 0.2744,
488
+ "step": 160
489
+ },
490
+ {
491
+ "epoch": 1.51,
492
+ "learning_rate": 2.8249274295566863e-06,
493
+ "loss": 0.2736,
494
+ "step": 162
495
+ },
496
+ {
497
+ "epoch": 1.53,
498
+ "learning_rate": 2.6216672095827267e-06,
499
+ "loss": 0.2681,
500
+ "step": 164
501
+ },
502
+ {
503
+ "epoch": 1.55,
504
+ "learning_rate": 2.424887578383799e-06,
505
+ "loss": 0.2703,
506
+ "step": 166
507
+ },
508
+ {
509
+ "epoch": 1.56,
510
+ "learning_rate": 2.234761372819577e-06,
511
+ "loss": 0.2649,
512
+ "step": 168
513
+ },
514
+ {
515
+ "epoch": 1.58,
516
+ "learning_rate": 2.0514555858664663e-06,
517
+ "loss": 0.2781,
518
+ "step": 170
519
+ },
520
+ {
521
+ "epoch": 1.6,
522
+ "learning_rate": 1.875131219943187e-06,
523
+ "loss": 0.2645,
524
+ "step": 172
525
+ },
526
+ {
527
+ "epoch": 1.62,
528
+ "learning_rate": 1.7059431454979825e-06,
529
+ "loss": 0.27,
530
+ "step": 174
531
+ },
532
+ {
533
+ "epoch": 1.64,
534
+ "learning_rate": 1.5440399649817384e-06,
535
+ "loss": 0.2683,
536
+ "step": 176
537
+ },
538
+ {
539
+ "epoch": 1.66,
540
+ "learning_rate": 1.3895638823264447e-06,
541
+ "loss": 0.2645,
542
+ "step": 178
543
+ },
544
+ {
545
+ "epoch": 1.68,
546
+ "learning_rate": 1.2426505780436326e-06,
547
+ "loss": 0.2712,
548
+ "step": 180
549
+ },
550
+ {
551
+ "epoch": 1.69,
552
+ "learning_rate": 1.1034290900525279e-06,
553
+ "loss": 0.2621,
554
+ "step": 182
555
+ },
556
+ {
557
+ "epoch": 1.71,
558
+ "learning_rate": 9.720217003425648e-07,
559
+ "loss": 0.268,
560
+ "step": 184
561
+ },
562
+ {
563
+ "epoch": 1.73,
564
+ "learning_rate": 8.485438275698154e-07,
565
+ "loss": 0.2641,
566
+ "step": 186
567
+ },
568
+ {
569
+ "epoch": 1.75,
570
+ "learning_rate": 7.331039256816664e-07,
571
+ "loss": 0.2623,
572
+ "step": 188
573
+ },
574
+ {
575
+ "epoch": 1.77,
576
+ "learning_rate": 6.258033886587911e-07,
577
+ "loss": 0.2714,
578
+ "step": 190
579
+ },
580
+ {
581
+ "epoch": 1.79,
582
+ "learning_rate": 5.267364614580861e-07,
583
+ "loss": 0.2723,
584
+ "step": 192
585
+ },
586
+ {
587
+ "epoch": 1.81,
588
+ "learning_rate": 4.359901572347758e-07,
589
+ "loss": 0.2611,
590
+ "step": 194
591
+ },
592
+ {
593
+ "epoch": 1.83,
594
+ "learning_rate": 3.5364418091641374e-07,
595
+ "loss": 0.2724,
596
+ "step": 196
597
+ },
598
+ {
599
+ "epoch": 1.84,
600
+ "learning_rate": 2.7977085919589253e-07,
601
+ "loss": 0.2738,
602
+ "step": 198
603
+ },
604
+ {
605
+ "epoch": 1.86,
606
+ "learning_rate": 2.1443507700495968e-07,
607
+ "loss": 0.2623,
608
+ "step": 200
609
+ },
610
+ {
611
+ "epoch": 1.88,
612
+ "learning_rate": 1.5769422052403172e-07,
613
+ "loss": 0.2695,
614
+ "step": 202
615
+ },
616
+ {
617
+ "epoch": 1.9,
618
+ "learning_rate": 1.0959812677835968e-07,
619
+ "loss": 0.2661,
620
+ "step": 204
621
+ },
622
+ {
623
+ "epoch": 1.92,
624
+ "learning_rate": 7.018903986483083e-08,
625
+ "loss": 0.2712,
626
+ "step": 206
627
+ },
628
+ {
629
+ "epoch": 1.94,
630
+ "learning_rate": 3.950157384783104e-08,
631
+ "loss": 0.2706,
632
+ "step": 208
633
+ },
634
+ {
635
+ "epoch": 1.96,
636
+ "learning_rate": 1.7562682356786488e-08,
637
+ "loss": 0.276,
638
+ "step": 210
639
+ },
640
+ {
641
+ "epoch": 1.97,
642
+ "learning_rate": 4.39163491205652e-09,
643
+ "loss": 0.2767,
644
+ "step": 212
645
+ },
646
+ {
647
+ "epoch": 1.99,
648
+ "learning_rate": 0.0,
649
+ "loss": 0.2624,
650
+ "step": 214
651
+ }
652
+ ],
653
+ "max_steps": 214,
654
+ "num_train_epochs": 2,
655
+ "total_flos": 1536113535614976.0,
656
+ "trial_name": null,
657
+ "trial_params": null
658
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe7ade02010de890951f8d2a3a60933d8a512b39c7bdca5d9951b162a710a84e
3
+ size 5051
zero_to_fp32.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # record shared parameters so that they can be recovered based on partners
124
+ # this is because such parameters holding reference only are not saved by optimizer
125
+ shared_params = []
126
+ for param in state_dict["module"]:
127
+ if param not in [*param_names, *buffer_names]:
128
+ for share_param in state_dict["module"]:
129
+ if (state_dict["module"][share_param].data_ptr() == state_dict["module"][param].data_ptr()
130
+ and share_param != param):
131
+ shared_params.append([param, share_param])
132
+ break
133
+
134
+ ds_version = state_dict.get(DS_VERSION, None)
135
+
136
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
137
+
138
+ z_model_state = zero_model_state(buffers=buffers,
139
+ param_shapes=param_shapes,
140
+ shared_params=shared_params,
141
+ ds_version=ds_version,
142
+ frozen_param_shapes=frozen_param_shapes,
143
+ frozen_param_fragments=frozen_param_fragments)
144
+ zero_model_states.append(z_model_state)
145
+
146
+ return zero_model_states
147
+
148
+
149
+ def parse_optim_states(files, ds_checkpoint_dir):
150
+
151
+ total_files = len(files)
152
+ state_dicts = []
153
+ for f in files:
154
+ state_dicts.append(torch.load(f, map_location=device))
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage == 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage == 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage == 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
219
+ elif zero_stage == 3:
220
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
221
+
222
+
223
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
224
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
225
+ return
226
+
227
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
228
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
229
+
230
+ if debug:
231
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
232
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
233
+
234
+ wanted_params = len(frozen_param_shapes)
235
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
236
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
237
+ print(f'Frozen params: Have {avail_numel} numels to process.')
238
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
239
+
240
+ total_params = 0
241
+ total_numel = 0
242
+ for name, shape in frozen_param_shapes.items():
243
+ total_params += 1
244
+ unpartitioned_numel = shape.numel()
245
+ total_numel += unpartitioned_numel
246
+
247
+ state_dict[name] = frozen_param_fragments[name]
248
+
249
+ if debug:
250
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
251
+
252
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
253
+
254
+
255
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
256
+ param_shapes = zero_model_states[0].param_shapes
257
+
258
+ # Reconstruction protocol:
259
+ #
260
+ # XXX: document this
261
+
262
+ if debug:
263
+ for i in range(world_size):
264
+ for j in range(len(fp32_flat_groups[0])):
265
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
266
+
267
+ # XXX: memory usage doubles here (zero2)
268
+ num_param_groups = len(fp32_flat_groups[0])
269
+ merged_single_partition_of_fp32_groups = []
270
+ for i in range(num_param_groups):
271
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
272
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
273
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
274
+ avail_numel = sum(
275
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
276
+
277
+ if debug:
278
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
279
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
280
+ # not asserting if there is a mismatch due to possible padding
281
+ print(f"Have {avail_numel} numels to process.")
282
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
283
+
284
+ # params
285
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
286
+ # out-of-core computing solution
287
+ total_numel = 0
288
+ total_params = 0
289
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
290
+ offset = 0
291
+ avail_numel = full_single_fp32_vector.numel()
292
+ for name, shape in shapes.items():
293
+
294
+ unpartitioned_numel = shape.numel()
295
+ total_numel += unpartitioned_numel
296
+ total_params += 1
297
+
298
+ if debug:
299
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
300
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
301
+ offset += unpartitioned_numel
302
+
303
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
304
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
305
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
306
+ # live optimizer object, so we are checking that the numbers are within the right range
307
+ align_to = 2 * world_size
308
+
309
+ def zero2_align(x):
310
+ return align_to * math.ceil(x / align_to)
311
+
312
+ if debug:
313
+ print(f"original offset={offset}, avail_numel={avail_numel}")
314
+
315
+ offset = zero2_align(offset)
316
+ avail_numel = zero2_align(avail_numel)
317
+
318
+ if debug:
319
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
320
+
321
+ # Sanity check
322
+ if offset != avail_numel:
323
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
324
+
325
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
326
+
327
+
328
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
329
+ state_dict = OrderedDict()
330
+
331
+ # buffers
332
+ buffers = zero_model_states[0].buffers
333
+ state_dict.update(buffers)
334
+ if debug:
335
+ print(f"added {len(buffers)} buffers")
336
+
337
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
338
+
339
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
340
+
341
+ # recover shared parameters
342
+ for pair in zero_model_states[0].shared_params:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
392
+ param_shapes = zero_model_states[0].param_shapes
393
+ avail_numel = fp32_flat_groups[0].numel() * world_size
394
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
395
+ # param, re-consolidating each param, while dealing with padding if any
396
+
397
+ # merge list of dicts, preserving order
398
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
399
+
400
+ if debug:
401
+ for i in range(world_size):
402
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
403
+
404
+ wanted_params = len(param_shapes)
405
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
406
+ # not asserting if there is a mismatch due to possible padding
407
+ avail_numel = fp32_flat_groups[0].numel() * world_size
408
+ print(f"Trainable params: Have {avail_numel} numels to process.")
409
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
410
+
411
+ # params
412
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
413
+ # out-of-core computing solution
414
+ offset = 0
415
+ total_numel = 0
416
+ total_params = 0
417
+ for name, shape in param_shapes.items():
418
+
419
+ unpartitioned_numel = shape.numel()
420
+ total_numel += unpartitioned_numel
421
+ total_params += 1
422
+
423
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
424
+
425
+ if debug:
426
+ print(
427
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
428
+ )
429
+
430
+ # XXX: memory usage doubles here
431
+ state_dict[name] = torch.cat(
432
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
433
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
434
+ offset += partitioned_numel
435
+
436
+ offset *= world_size
437
+
438
+ # Sanity check
439
+ if offset != avail_numel:
440
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
441
+
442
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
443
+
444
+
445
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
446
+ state_dict = OrderedDict()
447
+
448
+ # buffers
449
+ buffers = zero_model_states[0].buffers
450
+ state_dict.update(buffers)
451
+ if debug:
452
+ print(f"added {len(buffers)} buffers")
453
+
454
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
455
+
456
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
457
+
458
+ # recover shared parameters
459
+ for pair in zero_model_states[0].shared_params:
460
+ state_dict[pair[0]] = state_dict[pair[1]]
461
+
462
+ return state_dict
463
+
464
+
465
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
466
+ """
467
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
468
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
469
+ via a model hub.
470
+
471
+ Args:
472
+ - ``checkpoint_dir``: path to the desired checkpoint folder
473
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
474
+
475
+ Returns:
476
+ - pytorch ``state_dict``
477
+
478
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
479
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
480
+ the checkpoint.
481
+
482
+ A typical usage might be ::
483
+
484
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
485
+ # do the training and checkpoint saving
486
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
487
+ model = model.cpu() # move to cpu
488
+ model.load_state_dict(state_dict)
489
+ # submit to model hub or save the model to share with others
490
+
491
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
492
+ application. i.e. you will need to re-initialize the deepspeed engine, since
493
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
494
+
495
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
496
+
497
+ """
498
+ if tag is None:
499
+ latest_path = os.path.join(checkpoint_dir, 'latest')
500
+ if os.path.isfile(latest_path):
501
+ with open(latest_path, 'r') as fd:
502
+ tag = fd.read().strip()
503
+ else:
504
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
505
+
506
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
507
+
508
+ if not os.path.isdir(ds_checkpoint_dir):
509
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
510
+
511
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
512
+
513
+
514
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
515
+ """
516
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
517
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
518
+
519
+ Args:
520
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
521
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
522
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
523
+ """
524
+
525
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
526
+ print(f"Saving fp32 state dict to {output_file}")
527
+ torch.save(state_dict, output_file)
528
+
529
+
530
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
531
+ """
532
+ 1. Put the provided model to cpu
533
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
534
+ 3. Load it into the provided model
535
+
536
+ Args:
537
+ - ``model``: the model object to update
538
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
539
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
540
+
541
+ Returns:
542
+ - ``model`: modified model
543
+
544
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
545
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
546
+ conveniently placed for you in the checkpoint folder.
547
+
548
+ A typical usage might be ::
549
+
550
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
551
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
552
+ # submit to model hub or save the model to share with others
553
+
554
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
555
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
556
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
557
+
558
+ """
559
+ logger.info(f"Extracting fp32 weights")
560
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
561
+
562
+ logger.info(f"Overwriting model with fp32 weights")
563
+ model = model.cpu()
564
+ model.load_state_dict(state_dict, strict=False)
565
+
566
+ return model
567
+
568
+
569
+ if __name__ == "__main__":
570
+
571
+ parser = argparse.ArgumentParser()
572
+ parser.add_argument("checkpoint_dir",
573
+ type=str,
574
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
575
+ parser.add_argument(
576
+ "output_file",
577
+ type=str,
578
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
579
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
580
+ args = parser.parse_args()
581
+
582
+ debug = args.debug
583
+
584
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)