metadata
library_name: transformers
license: mit
base_model: xlnet/xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlnet-base-cased-grammar-ner
results: []
xlnet-base-cased-grammar-ner
This model is a fine-tuned version of xlnet/xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1027
- Accuracy: 0.9879
- F1 Macro: 0.7899
- F1 Micro: 0.9048
- Precision Macro: 0.8321
- Precision Micro: 0.9436
- Recall Macro: 0.7769
- Recall Micro: 0.8691
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 18
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro | Precision Macro | Precision Micro | Recall Macro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|
0.3654 | 1.0 | 93 | 0.2315 | 0.9329 | 0.2241 | 0.4091 | 0.2338 | 0.5016 | 0.2436 | 0.3454 |
0.1834 | 2.0 | 186 | 0.1603 | 0.9627 | 0.2982 | 0.6748 | 0.4007 | 0.8441 | 0.2733 | 0.5621 |
0.1161 | 3.0 | 279 | 0.1472 | 0.9649 | 0.4016 | 0.7249 | 0.4585 | 0.7494 | 0.3910 | 0.7020 |
0.0764 | 4.0 | 372 | 0.1233 | 0.9739 | 0.4844 | 0.7783 | 0.5824 | 0.8346 | 0.4487 | 0.7291 |
0.0561 | 5.0 | 465 | 0.1224 | 0.9738 | 0.4467 | 0.7792 | 0.5923 | 0.8650 | 0.4044 | 0.7088 |
0.0423 | 6.0 | 558 | 0.1135 | 0.9799 | 0.6021 | 0.8375 | 0.6885 | 0.8825 | 0.5619 | 0.7968 |
0.0319 | 7.0 | 651 | 0.0987 | 0.9820 | 0.6386 | 0.8541 | 0.6928 | 0.8841 | 0.6342 | 0.8262 |
0.0221 | 8.0 | 744 | 0.1034 | 0.9836 | 0.6463 | 0.8623 | 0.7605 | 0.9184 | 0.6045 | 0.8126 |
0.0175 | 9.0 | 837 | 0.0984 | 0.9852 | 0.6852 | 0.8794 | 0.7154 | 0.9045 | 0.6849 | 0.8555 |
0.0094 | 10.0 | 930 | 0.0985 | 0.9865 | 0.6985 | 0.8936 | 0.7434 | 0.9272 | 0.6914 | 0.8623 |
0.0078 | 11.0 | 1023 | 0.0987 | 0.9858 | 0.7314 | 0.8876 | 0.7563 | 0.9119 | 0.7406 | 0.8646 |
0.0056 | 12.0 | 1116 | 0.1051 | 0.9868 | 0.7501 | 0.8923 | 0.7955 | 0.9270 | 0.7410 | 0.8600 |
0.0047 | 13.0 | 1209 | 0.1027 | 0.9866 | 0.7606 | 0.8936 | 0.8116 | 0.9272 | 0.7469 | 0.8623 |
0.0031 | 14.0 | 1302 | 0.1009 | 0.9866 | 0.7762 | 0.8953 | 0.8034 | 0.9233 | 0.7769 | 0.8691 |
0.0027 | 15.0 | 1395 | 0.1008 | 0.9873 | 0.7763 | 0.8995 | 0.8073 | 0.9322 | 0.7769 | 0.8691 |
0.002 | 16.0 | 1488 | 0.1034 | 0.9884 | 0.7939 | 0.9067 | 0.8590 | 0.9505 | 0.7591 | 0.8668 |
0.0015 | 17.0 | 1581 | 0.1020 | 0.9881 | 0.7925 | 0.9059 | 0.8362 | 0.9459 | 0.7769 | 0.8691 |
0.0016 | 18.0 | 1674 | 0.1027 | 0.9879 | 0.7899 | 0.9048 | 0.8321 | 0.9436 | 0.7769 | 0.8691 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3