Create codeparrot_training.py
Browse files- codeparrot_training.py +200 -0
codeparrot_training.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, AutoTokenizer
|
2 |
+
from transformers import AdamW, get_scheduler, set_seed
|
3 |
+
from datasets import load_dataset
|
4 |
+
from accelerate import Accelerator
|
5 |
+
import datasets, transformers
|
6 |
+
from huggingface_hub import Repository
|
7 |
+
|
8 |
+
from torch.utils.data import IterableDataset
|
9 |
+
from torch.utils.data.dataloader import DataLoader
|
10 |
+
from torch.utils.tensorboard import SummaryWriter
|
11 |
+
from argparse import Namespace
|
12 |
+
import torch
|
13 |
+
import logging
|
14 |
+
import wandb
|
15 |
+
|
16 |
+
class ConstantLengthDataset(IterableDataset):
|
17 |
+
|
18 |
+
def __init__(self, tokenizer, dataset, seq_length=1024,
|
19 |
+
num_of_sequences=1024, chars_per_token=3.6):
|
20 |
+
self.tokenizer = tokenizer
|
21 |
+
self.concat_token_id = tokenizer.bos_token_id
|
22 |
+
self.dataset = dataset
|
23 |
+
self.seq_length = seq_length
|
24 |
+
self.input_characters = seq_length * chars_per_token * num_of_sequences
|
25 |
+
|
26 |
+
def __iter__(self):
|
27 |
+
iterator = iter(self.dataset)
|
28 |
+
more_examples = True
|
29 |
+
while more_examples:
|
30 |
+
buffer, buffer_len = [], 0
|
31 |
+
while True:
|
32 |
+
if buffer_len >= self.input_characters:
|
33 |
+
break
|
34 |
+
try:
|
35 |
+
buffer.append(next(iterator)['content'])
|
36 |
+
buffer_len += len(buffer[-1])
|
37 |
+
except StopIteration:
|
38 |
+
iterator = iter(self.dataset)
|
39 |
+
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
|
40 |
+
all_token_ids = []
|
41 |
+
for tokenized_input in tokenized_inputs:
|
42 |
+
all_token_ids.extend(tokenized_input + [self.concat_token_id])
|
43 |
+
for i in range(0, len(all_token_ids), self.seq_length):
|
44 |
+
input_ids = all_token_ids[i : i + self.seq_length]
|
45 |
+
if len(input_ids) == self.seq_length:
|
46 |
+
yield torch.tensor(input_ids)
|
47 |
+
|
48 |
+
def setup_logging(project_name):
|
49 |
+
logger = logging.getLogger(__name__)
|
50 |
+
logging.basicConfig(
|
51 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
52 |
+
datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[
|
53 |
+
logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
|
54 |
+
logging.StreamHandler()])
|
55 |
+
if accelerator.is_main_process: # we only want to setup logging once
|
56 |
+
wandb.init(project=project_name, config=args)
|
57 |
+
run_name = wandb.run.name
|
58 |
+
tb_writer = SummaryWriter()
|
59 |
+
tb_writer.add_hparams(vars(args), {'0': 0})
|
60 |
+
logger.setLevel(logging.INFO)
|
61 |
+
datasets.utils.logging.set_verbosity_info()
|
62 |
+
transformers.utils.logging.set_verbosity_info()
|
63 |
+
else:
|
64 |
+
tb_writer = None
|
65 |
+
run_name = ''
|
66 |
+
logger.setLevel(logging.ERROR)
|
67 |
+
datasets.utils.logging.set_verbosity_error()
|
68 |
+
transformers.utils.logging.set_verbosity_error()
|
69 |
+
return logger, tb_writer, run_name
|
70 |
+
|
71 |
+
def create_dataloaders(dataset_name, args):
|
72 |
+
ds_kwargs = {"streaming":True}
|
73 |
+
train_data = load_dataset(dataset_name+'-train', split='train', **ds_kwargs)
|
74 |
+
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
|
75 |
+
seed=args.seed)
|
76 |
+
valid_data = load_dataset(dataset_name+'-valid', split="train", **ds_kwargs)
|
77 |
+
train_dataset = ConstantLengthDataset(tokenizer, train_data,
|
78 |
+
seq_length=args.seq_length)
|
79 |
+
valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
|
80 |
+
seq_length=args.seq_length)
|
81 |
+
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
|
82 |
+
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
|
83 |
+
return train_dataloader, eval_dataloader
|
84 |
+
|
85 |
+
def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]):
|
86 |
+
params_with_wd, params_without_wd = [], []
|
87 |
+
for n, p in model.named_parameters():
|
88 |
+
if any(nd in n for nd in no_decay): params_without_wd.append(p)
|
89 |
+
else: params_with_wd.append(p)
|
90 |
+
return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
|
91 |
+
{'params': params_without_wd, 'weight_decay': 0.0}]
|
92 |
+
|
93 |
+
def log_metrics(step, metrics):
|
94 |
+
logger.info(f"Step {step}: {metrics}")
|
95 |
+
if accelerator.is_main_process:
|
96 |
+
wandb.log(metrics)
|
97 |
+
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
|
98 |
+
|
99 |
+
def evaluate(args):
|
100 |
+
model.eval()
|
101 |
+
losses = []
|
102 |
+
for step, batch in enumerate(eval_dataloader):
|
103 |
+
with torch.no_grad():
|
104 |
+
outputs = model(batch, labels=batch)
|
105 |
+
loss = outputs.loss.repeat(args.valid_batch_size)
|
106 |
+
losses.append(accelerator.gather(loss))
|
107 |
+
if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
|
108 |
+
loss = torch.mean(torch.cat(losses))
|
109 |
+
try: perplexity = torch.exp(loss)
|
110 |
+
except OverflowError: perplexity = float("inf")
|
111 |
+
return loss.item(), perplexity.item()
|
112 |
+
|
113 |
+
# Accelerator
|
114 |
+
accelerator = Accelerator()
|
115 |
+
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}
|
116 |
+
|
117 |
+
# Hyperparameters
|
118 |
+
project_name = 'lvwerra/codeparrot-small'
|
119 |
+
dataset_name = '../codeparrot-clean'
|
120 |
+
config = {"train_batch_size": 12,
|
121 |
+
"valid_batch_size": 12,
|
122 |
+
"weight_decay": 0.1,
|
123 |
+
"shuffle_buffer": 1_000,
|
124 |
+
"learning_rate": 5e-4,
|
125 |
+
"lr_scheduler_type": "cosine",
|
126 |
+
"num_warmup_steps": 2_000,
|
127 |
+
"gradient_accumulation_steps": 1,
|
128 |
+
"gradient_checkpointing": False,
|
129 |
+
"max_train_steps": 150_000,
|
130 |
+
"max_eval_steps": -1,
|
131 |
+
"seq_length": 1024,
|
132 |
+
"seed": 1,
|
133 |
+
"save_checkpoint_steps": 15_000}
|
134 |
+
args = Namespace(**config, **acc_state)
|
135 |
+
samples_per_step = accelerator.state.num_processes * args.train_batch_size
|
136 |
+
set_seed(args.seed)
|
137 |
+
|
138 |
+
# Logging
|
139 |
+
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
|
140 |
+
logger.info(accelerator.state)
|
141 |
+
|
142 |
+
# Load model and tokenizer
|
143 |
+
if accelerator.is_main_process:
|
144 |
+
hf_repo = Repository("./", clone_from=project_name, revision=run_name)
|
145 |
+
model = GPT2LMHeadModel.from_pretrained("./")
|
146 |
+
if args.gradient_checkpointing:
|
147 |
+
model.gradient_checkpointing_enable()
|
148 |
+
tokenizer = AutoTokenizer.from_pretrained("./")
|
149 |
+
|
150 |
+
# Load dataset and dataloader
|
151 |
+
train_dataloader, eval_dataloader = create_dataloaders(dataset_name, args)
|
152 |
+
|
153 |
+
# Prepare the optimizer and learning rate scheduler
|
154 |
+
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
|
155 |
+
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
|
156 |
+
num_warmup_steps=args.num_warmup_steps,
|
157 |
+
num_training_steps=args.max_train_steps,)
|
158 |
+
def get_lr(): return optimizer.param_groups[0]['lr']
|
159 |
+
|
160 |
+
# Prepare everything with our `accelerator`.
|
161 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
162 |
+
model, optimizer, train_dataloader, eval_dataloader)
|
163 |
+
|
164 |
+
# Train model
|
165 |
+
model.train()
|
166 |
+
completed_steps = 0
|
167 |
+
for step, batch in enumerate(train_dataloader, start=1):
|
168 |
+
loss = model(batch, labels=batch, use_cache=False).loss
|
169 |
+
log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
|
170 |
+
'steps': completed_steps, 'loss/train': loss.item()})
|
171 |
+
loss = loss / args.gradient_accumulation_steps
|
172 |
+
accelerator.backward(loss)
|
173 |
+
if step % args.gradient_accumulation_steps == 0:
|
174 |
+
accelerator.clip_grad_norm_(model.parameters(), 1.0)
|
175 |
+
optimizer.step()
|
176 |
+
lr_scheduler.step()
|
177 |
+
optimizer.zero_grad()
|
178 |
+
completed_steps += 1
|
179 |
+
if step % args.save_checkpoint_steps == 0:
|
180 |
+
logger.info('Evaluating and saving model checkpoint')
|
181 |
+
eval_loss, perplexity = evaluate(args)
|
182 |
+
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
|
183 |
+
accelerator.wait_for_everyone()
|
184 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
185 |
+
unwrapped_model.save_pretrained("./", save_function=accelerator.save)
|
186 |
+
if accelerator.is_main_process:
|
187 |
+
hf_repo.push_to_hub(commit_message=f'step {step}')
|
188 |
+
model.train()
|
189 |
+
if completed_steps >= args.max_train_steps:
|
190 |
+
break
|
191 |
+
|
192 |
+
# Evaluate and save the last checkpoint
|
193 |
+
logger.info('Evaluating and saving model after training')
|
194 |
+
eval_loss, perplexity = evaluate(args)
|
195 |
+
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
|
196 |
+
accelerator.wait_for_everyone()
|
197 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
198 |
+
unwrapped_model.save_pretrained("./", save_function=accelerator.save)
|
199 |
+
if accelerator.is_main_process:
|
200 |
+
hf_repo.push_to_hub(commit_message=f'final model')
|