codeparrot-small / codeparrot_training.py
lvwerra's picture
lvwerra HF staff
Update codeparrot_training.py
74c33a2
raw
history blame
8.81 kB
from transformers import GPT2LMHeadModel, AutoTokenizer
from transformers import AdamW, get_scheduler, set_seed
from datasets import load_dataset
from accelerate import Accelerator
import datasets, transformers
from huggingface_hub import Repository
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from argparse import Namespace
import torch
import logging
import wandb
class ConstantLengthDataset(IterableDataset):
def __init__(self, tokenizer, dataset, infinite=False, seq_length=1024,
num_of_sequences=1024, chars_per_token=3.6):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.bos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.input_characters = seq_length * chars_per_token * num_of_sequences
self.epoch = 0
self.infinite = infinite
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(iterator)['content'])
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
self.epoch += 1
logger.info(f"Dataset epoch: {self.epoch}")
else:
more_examples = False
break
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id])
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
yield torch.tensor(input_ids)
def setup_logging(project_name):
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[
logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
logging.StreamHandler()])
if accelerator.is_main_process: # we only want to setup logging once
wandb.init(project=project_name, config=args)
run_name = wandb.run.name
tb_writer = SummaryWriter()
tb_writer.add_hparams(vars(args), {'0': 0})
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity_info()
transformers.utils.logging.set_verbosity_info()
else:
tb_writer = None
run_name = ''
logger.setLevel(logging.ERROR)
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
return logger, tb_writer, run_name
def create_dataloaders(dataset_name, args):
ds_kwargs = {"streaming":True}
train_data = load_dataset(dataset_name+'-train', split='train', **ds_kwargs)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
seed=args.seed)
valid_data = load_dataset(dataset_name+'-valid', split="train", **ds_kwargs)
train_dataset = ConstantLengthDataset(tokenizer, train_data, infinite=True,
seq_length=args.seq_length)
valid_dataset = ConstantLengthDataset(tokenizer, valid_data, infinite=False,
seq_length=args.seq_length)
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
return train_dataloader, eval_dataloader
def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]):
params_with_wd, params_without_wd = [], []
for n, p in model.named_parameters():
if any(nd in n for nd in no_decay): params_without_wd.append(p)
else: params_with_wd.append(p)
return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
{'params': params_without_wd, 'weight_decay': 0.0}]
def log_metrics(step, metrics):
logger.info(f"Step {step}: {metrics}")
if accelerator.is_main_process:
wandb.log(metrics)
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
def evaluate(args):
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(batch, labels=batch)
loss = outputs.loss.repeat(args.valid_batch_size)
losses.append(accelerator.gather(loss))
if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
loss = torch.mean(torch.cat(losses))
try: perplexity = torch.exp(loss)
except OverflowError: perplexity = float("inf")
return loss.item(), perplexity.item()
# Accelerator
accelerator = Accelerator()
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}
# Hyperparameters
project_name = 'lvwerra/codeparrot-small'
dataset_name = '../codeparrot-clean'
config = {"train_batch_size": 12,
"valid_batch_size": 12,
"weight_decay": 0.1,
"shuffle_buffer": 1_000,
"learning_rate": 5e-4,
"lr_scheduler_type": "cosine",
"num_warmup_steps": 2_000,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": False,
"max_train_steps": 150_000,
"max_eval_steps": -1,
"seq_length": 1024,
"seed": 1,
"save_checkpoint_steps": 15_000}
args = Namespace(**config, **acc_state)
samples_per_step = accelerator.state.num_processes * args.train_batch_size
set_seed(args.seed)
# Logging
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)
# Load model and tokenizer
if accelerator.is_main_process:
hf_repo = Repository("./", clone_from=project_name, revision=run_name)
model = GPT2LMHeadModel.from_pretrained("./")
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained("./")
# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name, args)
# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,)
def get_lr(): return optimizer.param_groups[0]['lr']
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader)
# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
loss = model(batch, labels=batch, use_cache=False).loss
log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
'steps': completed_steps, 'loss/train': loss.item()})
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
completed_steps += 1
if step % args.save_checkpoint_steps == 0:
logger.info('Evaluating and saving model checkpoint')
eval_loss, perplexity = evaluate(args)
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained("./", save_function=accelerator.save)
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message=f'step {step}')
model.train()
if completed_steps >= args.max_train_steps:
break
# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
eval_loss, perplexity = evaluate(args)
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained("./", save_function=accelerator.save)
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message=f'final model')