|
--- |
|
language: "ca" |
|
tags: |
|
- masked-lm |
|
- catalan |
|
- exbert |
|
license: mit |
|
--- |
|
|
|
# Calbert: a Catalan Language Model |
|
|
|
## Introduction |
|
|
|
CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture. |
|
|
|
It is now available on Hugging Face in its `tiny-uncased` version (the one you're looking at) and `base-uncased` as well, and was pretrained on the [OSCAR dataset](https://traces1.inria.fr/oscar/). |
|
|
|
For further information or requests, please go to the [GitHub repository](https://github.com/codegram/calbert) |
|
|
|
## Pre-trained models |
|
|
|
| Model | Arch. | Training data | |
|
| ----------------------------------- | -------------- | ---------------------- | |
|
| `codegram` / `calbert-tiny-uncased` | Tiny (uncased) | OSCAR (4.3 GB of text) | |
|
| `codegram` / `calbert-base-uncased` | Base (uncased) | OSCAR (4.3 GB of text) | |
|
|
|
## How to use Calbert with HuggingFace |
|
|
|
#### Load Calbert and its tokenizer: |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-tiny-uncased") |
|
model = AutoModel.from_pretrained("codegram/calbert-tiny-uncased") |
|
|
|
model.eval() # disable dropout (or leave in train mode to finetune |
|
``` |
|
|
|
#### Filling masks using pipeline |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
calbert_fill_mask = pipeline("fill-mask", model="codegram/calbert-tiny-uncased", tokenizer="codegram/calbert-tiny-uncased") |
|
results = calbert_fill_mask("M'agrada [MASK] això") |
|
# results |
|
# [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.4403671622276306, 'token': 61}, |
|
# {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.050061386078596115, 'token': 43}, |
|
# {'sequence': "[CLS] m'agrada veure aixo[SEP]", 'score': 0.026286985725164413, 'token': 157}, |
|
# {'sequence': "[CLS] m'agrada bastant aixo[SEP]", 'score': 0.022483550012111664, 'token': 2143}, |
|
# {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.014491282403469086, 'token': 4867}] |
|
|
|
``` |
|
|
|
#### Extract contextual embedding features from Calbert output |
|
|
|
```python |
|
import torch |
|
# Tokenize in sub-words with SentencePiece |
|
tokenized_sentence = tokenizer.tokenize("M'és una mica igual") |
|
# ['▁m', "'", 'es', '▁una', '▁mica', '▁igual'] |
|
|
|
# 1-hot encode and add special starting and end tokens |
|
encoded_sentence = tokenizer.encode(tokenized_sentence) |
|
# [2, 109, 7, 71, 36, 371, 1103, 3] |
|
# NB: Can be done in one step : tokenize.encode("M'és una mica igual") |
|
|
|
# Feed tokens to Calbert as a torch tensor (batch dim 1) |
|
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) |
|
embeddings, _ = model(encoded_sentence) |
|
embeddings.size() |
|
# torch.Size([1, 8, 312]) |
|
embeddings.detach() |
|
# tensor([[[-0.2726, -0.9855, 0.9643, ..., 0.3511, 0.3499, -0.1984], |
|
# [-0.2824, -1.1693, -0.2365, ..., -3.1866, -0.9386, -1.3718], |
|
# [-2.3645, -2.2477, -1.6985, ..., -1.4606, -2.7294, 0.2495], |
|
# ..., |
|
# [ 0.8800, -0.0244, -3.0446, ..., 0.5148, -3.0903, 1.1879], |
|
# [ 1.1300, 0.2425, 0.2162, ..., -0.5722, -2.2004, 0.4045], |
|
# [ 0.4549, -0.2378, -0.2290, ..., -2.1247, -2.2769, -0.0820]]]) |
|
``` |
|
|
|
## Authors |
|
|
|
CALBERT was trained and evaluated by [Txus Bach](https://twitter.com/txustice), as part of [Codegram](https://www.codegram.com)'s applied research. |
|
|
|
<a href="https://huggingface.co/exbert/?model=codegram/calbert-tiny-uncased&modelKind=bidirectional&sentence=M%27agradaria%20força%20saber-ne%20més"> |
|
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> |
|
</a> |
|
|