Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +203 -152
sd_token_similarity_calculator.ipynb
CHANGED
@@ -155,118 +155,29 @@
|
|
155 |
],
|
156 |
"metadata": {
|
157 |
"id": "Ch9puvwKH1s3",
|
158 |
-
"collapsed": true
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
{
|
164 |
-
"cell_type": "code",
|
165 |
-
"source": [
|
166 |
-
"# @title 📝 Prompt similarity: Order pre-made text_encodings\n",
|
167 |
-
"prompt = \" a fast car on the road \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
168 |
-
"from transformers import AutoTokenizer\n",
|
169 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
170 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
171 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
172 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
173 |
-
"\n",
|
174 |
-
"# Get text features for user input\n",
|
175 |
-
"inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
176 |
-
"text_features_A = model.get_text_features(**inputs)\n",
|
177 |
-
"text_features_A = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
178 |
-
"name_A = prompt\n",
|
179 |
-
"#------#\n",
|
180 |
-
"\n",
|
181 |
-
"# Load the .db file for prefix encodings\n",
|
182 |
-
"import shelve\n",
|
183 |
-
"_iters = -1\n",
|
184 |
-
"RANGE = NUM_PREFIX\n",
|
185 |
-
"NUM_PREFIX_LISTS = 1\n",
|
186 |
-
"dots = results_sim = torch.zeros(RANGE*NUM_PREFIX_LISTS)\n",
|
187 |
-
"for _PREFIX_ENC_VOCAB in PREFIX_ENC_VOCAB:\n",
|
188 |
-
" _iters = _iters + 1\n",
|
189 |
-
" d = shelve.open(_PREFIX_ENC_VOCAB)\n",
|
190 |
-
" for _index in range(RANGE):\n",
|
191 |
-
" index = _iters*RANGE + _index\n",
|
192 |
-
" text_features = d[f'{_index}']\n",
|
193 |
-
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
194 |
-
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
195 |
-
" dots[index] = sim\n",
|
196 |
-
" #----#\n",
|
197 |
-
" d.close() #close the file\n",
|
198 |
-
"#------#\n",
|
199 |
-
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
200 |
-
"#------#\n",
|
201 |
-
"\n",
|
202 |
-
"# Load the .db file for prefix encodings\n",
|
203 |
-
"import shelve\n",
|
204 |
-
"_iters = -1\n",
|
205 |
-
"RANGE = NUM_SUFFIX\n",
|
206 |
-
"dots = results_sim = torch.zeros(RANGE*NUM_SUFFIX_LISTS)\n",
|
207 |
-
"for _SUFFIX_ENC_VOCAB in SUFFIX_ENC_VOCAB:\n",
|
208 |
-
" _iters = _iters + 1\n",
|
209 |
-
" d = shelve.open(_SUFFIX_ENC_VOCAB)\n",
|
210 |
-
" for _index in range(RANGE):\n",
|
211 |
-
" index = _iters*RANGE + _index\n",
|
212 |
-
" text_features = d[f'{_index}']\n",
|
213 |
-
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
214 |
-
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
215 |
-
" dots[index] = sim\n",
|
216 |
-
" #----#\n",
|
217 |
-
" d.close() #close the file\n",
|
218 |
-
"#------#\n",
|
219 |
-
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
220 |
-
"#------#\n",
|
221 |
-
"\n",
|
222 |
-
"#Print the results\n",
|
223 |
-
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
224 |
-
"RANGE = 30\n",
|
225 |
-
"_suffixes = '{'\n",
|
226 |
-
"_sims = '{'\n",
|
227 |
-
"for index in range(RANGE):\n",
|
228 |
-
" id = int(suffix_indices[index])\n",
|
229 |
-
" ahead = \"from \"\n",
|
230 |
-
" behind = \"\"\n",
|
231 |
-
" if(id>NUM_SUFFIX*1):\n",
|
232 |
-
" ahead = \"a \"\n",
|
233 |
-
" if(id>NUM_SUFFIX*2):\n",
|
234 |
-
" ahead = \"by \"\n",
|
235 |
-
" if(id>NUM_SUFFIX*3):\n",
|
236 |
-
" ahead = \"\"\n",
|
237 |
-
" behind = \"like\"\n",
|
238 |
-
" id = _modulus(id,NUM_SUFFIX)\n",
|
239 |
-
" #------#\n",
|
240 |
-
" sim = suffix_sorted[index].item()\n",
|
241 |
-
" name = ahead + get_suffix(id) + behind\n",
|
242 |
-
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
243 |
-
" _suffixes = _suffixes + name + '|'\n",
|
244 |
-
" _sims = _sims + f'{round(sim*100,2)} %' + '|'\n",
|
245 |
-
"#------#\n",
|
246 |
-
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
247 |
-
"_sims = (_sims + '}').replace('|}', '}')\n",
|
248 |
-
"\n",
|
249 |
-
"print('most similiar suffix items to prompt : ' + _suffixes)\n",
|
250 |
-
"print('similarity % for suffix items : ' + _sims)\n",
|
251 |
-
"print('')\n",
|
252 |
-
"\n",
|
253 |
-
"#-------#\n",
|
254 |
-
"\n",
|
255 |
-
"_prefixes = '{'\n",
|
256 |
-
"for index in range(RANGE):\n",
|
257 |
-
" id = f'{prefix_indices[index]}'\n",
|
258 |
-
" #sim = prefix_sorted[index]\n",
|
259 |
-
" name = get_prefix(id)\n",
|
260 |
-
" _prefixes = _prefixes + name + '|'\n",
|
261 |
-
"#------#\n",
|
262 |
-
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
263 |
-
"print('most similiar prefix suffix to image : ' + _prefixes)\n"
|
264 |
-
],
|
265 |
-
"metadata": {
|
266 |
-
"id": "xc-PbIYF428y"
|
267 |
},
|
268 |
-
"execution_count":
|
269 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
},
|
271 |
{
|
272 |
"cell_type": "code",
|
@@ -421,6 +332,146 @@
|
|
421 |
"execution_count": null,
|
422 |
"outputs": []
|
423 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
{
|
425 |
"cell_type": "markdown",
|
426 |
"source": [
|
@@ -474,13 +525,13 @@
|
|
474 |
],
|
475 |
"metadata": {
|
476 |
"id": "ke6mZ1RZDOeB",
|
477 |
-
"outputId": "
|
478 |
"colab": {
|
479 |
"base_uri": "https://localhost:8080/",
|
480 |
"height": 1000
|
481 |
}
|
482 |
},
|
483 |
-
"execution_count":
|
484 |
"outputs": [
|
485 |
{
|
486 |
"output_type": "display_data",
|
@@ -497,6 +548,15 @@
|
|
497 |
{
|
498 |
"cell_type": "code",
|
499 |
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
"\n",
|
501 |
"from transformers import AutoTokenizer\n",
|
502 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
@@ -554,12 +614,14 @@
|
|
554 |
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
555 |
"#------#\n",
|
556 |
"\n",
|
|
|
557 |
"#Print the results\n",
|
558 |
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
559 |
-
"RANGE =
|
560 |
"_suffixes = '{'\n",
|
561 |
"_sims = '{'\n",
|
562 |
-
"for index in range(RANGE):\n",
|
|
|
563 |
" id = int(suffix_indices[index])\n",
|
564 |
" ahead = \"from \"\n",
|
565 |
" behind = \"\"\n",
|
@@ -576,62 +638,51 @@
|
|
576 |
" name = ahead + get_suffix(id) + behind\n",
|
577 |
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
578 |
" _suffixes = _suffixes + name + '|'\n",
|
579 |
-
" _sims = _sims + f'{round(sim
|
580 |
"#------#\n",
|
581 |
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
582 |
"_sims = (_sims + '}').replace('|}', '}')\n",
|
|
|
583 |
"\n",
|
584 |
-
"
|
585 |
-
"
|
586 |
-
"
|
|
|
|
|
587 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
588 |
"#-------#\n",
|
589 |
"\n",
|
590 |
"_prefixes = '{'\n",
|
591 |
-
"for index in range(RANGE):\n",
|
|
|
592 |
" id = f'{prefix_indices[index]}'\n",
|
593 |
" #sim = prefix_sorted[index]\n",
|
594 |
" name = get_prefix(id)\n",
|
595 |
" _prefixes = _prefixes + name + '|'\n",
|
596 |
"#------#\n",
|
597 |
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
598 |
-
"print('most similiar prefix suffix to image : ' + _prefixes)\n"
|
599 |
-
],
|
600 |
-
"metadata": {
|
601 |
-
"id": "rebogpoyOG8k"
|
602 |
-
},
|
603 |
-
"execution_count": null,
|
604 |
-
"outputs": []
|
605 |
-
},
|
606 |
-
{
|
607 |
-
"cell_type": "code",
|
608 |
-
"source": [
|
609 |
-
"# @title 🖼️ Show the 10 most similiar suffix and prefix text-encodings to the image encoding\n",
|
610 |
"\n",
|
611 |
-
"_suffixes = '{'\n",
|
612 |
-
"for index in range(20):\n",
|
613 |
-
" id = f'{suffix_indices[index]}'\n",
|
614 |
-
" sim = suffix_sorted[index]\n",
|
615 |
-
" name = get_suffix(id)\n",
|
616 |
-
" _suffixes = _suffixes + name + '|'\n",
|
617 |
-
"#------#\n",
|
618 |
-
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
619 |
-
"print('most similiar suffix tokens to image : ' + _suffixes)\n",
|
620 |
"\n",
|
621 |
-
"
|
|
|
622 |
"\n",
|
623 |
-
"
|
624 |
-
"
|
625 |
-
"
|
626 |
-
"
|
627 |
-
"
|
628 |
-
"
|
629 |
-
"
|
630 |
-
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
631 |
-
"print('most similiar prefix tokens to image : ' + _prefixes)\n"
|
632 |
],
|
633 |
"metadata": {
|
634 |
-
"id": "
|
635 |
},
|
636 |
"execution_count": null,
|
637 |
"outputs": []
|
|
|
155 |
],
|
156 |
"metadata": {
|
157 |
"id": "Ch9puvwKH1s3",
|
158 |
+
"collapsed": true,
|
159 |
+
"outputId": "129b355e-9a4f-49d1-b641-3b675558f9b2",
|
160 |
+
"colab": {
|
161 |
+
"base_uri": "https://localhost:8080/"
|
162 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
},
|
164 |
+
"execution_count": 1,
|
165 |
+
"outputs": [
|
166 |
+
{
|
167 |
+
"output_type": "stream",
|
168 |
+
"name": "stdout",
|
169 |
+
"text": [
|
170 |
+
"Cloning into 'sd_tokens'...\n",
|
171 |
+
"remote: Enumerating objects: 99, done.\u001b[K\n",
|
172 |
+
"remote: Counting objects: 100% (96/96), done.\u001b[K\n",
|
173 |
+
"remote: Compressing objects: 100% (96/96), done.\u001b[K\n",
|
174 |
+
"remote: Total 99 (delta 34), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
175 |
+
"Unpacking objects: 100% (99/99), 1.35 MiB | 3.12 MiB/s, done.\n",
|
176 |
+
"Filtering content: 100% (22/22), 2.47 GiB | 39.37 MiB/s, done.\n",
|
177 |
+
"/content/sd_tokens\n"
|
178 |
+
]
|
179 |
+
}
|
180 |
+
]
|
181 |
},
|
182 |
{
|
183 |
"cell_type": "code",
|
|
|
332 |
"execution_count": null,
|
333 |
"outputs": []
|
334 |
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"source": [
|
338 |
+
"# @title 📝 Get Prompt text_encoding similarity to the pre-calc. text_encodings\n",
|
339 |
+
"prompt = \" a fast car on the road \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
340 |
+
"list_size = 100 # @param {type:'number'}\n",
|
341 |
+
"start_at_index = 0 # @param {type:'number'}\n",
|
342 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
343 |
+
"print_Suffix = True # @param {type:\"boolean\"}\n",
|
344 |
+
"print_Prefix = True # @param {type:\"boolean\"}\n",
|
345 |
+
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
346 |
+
"compact_Output = False # @param {type:\"boolean\"}\n",
|
347 |
+
"\n",
|
348 |
+
"from transformers import AutoTokenizer\n",
|
349 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
350 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
351 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
352 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
353 |
+
"\n",
|
354 |
+
"# Get text features for user input\n",
|
355 |
+
"inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
356 |
+
"text_features_A = model.get_text_features(**inputs)\n",
|
357 |
+
"text_features_A = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
358 |
+
"name_A = prompt\n",
|
359 |
+
"#------#\n",
|
360 |
+
"\n",
|
361 |
+
"# Load the .db file for prefix encodings\n",
|
362 |
+
"import shelve\n",
|
363 |
+
"_iters = -1\n",
|
364 |
+
"RANGE = NUM_PREFIX\n",
|
365 |
+
"NUM_PREFIX_LISTS = 1\n",
|
366 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_PREFIX_LISTS)\n",
|
367 |
+
"for _PREFIX_ENC_VOCAB in PREFIX_ENC_VOCAB:\n",
|
368 |
+
" _iters = _iters + 1\n",
|
369 |
+
" d = shelve.open(_PREFIX_ENC_VOCAB)\n",
|
370 |
+
" for _index in range(RANGE):\n",
|
371 |
+
" index = _iters*RANGE + _index\n",
|
372 |
+
" text_features = d[f'{_index}']\n",
|
373 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
374 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
375 |
+
" dots[index] = sim\n",
|
376 |
+
" #----#\n",
|
377 |
+
" d.close() #close the file\n",
|
378 |
+
"#------#\n",
|
379 |
+
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
380 |
+
"#------#\n",
|
381 |
+
"\n",
|
382 |
+
"# Load the .db file for prefix encodings\n",
|
383 |
+
"import shelve\n",
|
384 |
+
"_iters = -1\n",
|
385 |
+
"RANGE = NUM_SUFFIX\n",
|
386 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_SUFFIX_LISTS)\n",
|
387 |
+
"for _SUFFIX_ENC_VOCAB in SUFFIX_ENC_VOCAB:\n",
|
388 |
+
" _iters = _iters + 1\n",
|
389 |
+
" d = shelve.open(_SUFFIX_ENC_VOCAB)\n",
|
390 |
+
" for _index in range(RANGE):\n",
|
391 |
+
" index = _iters*RANGE + _index\n",
|
392 |
+
" text_features = d[f'{_index}']\n",
|
393 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
394 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
395 |
+
" dots[index] = sim\n",
|
396 |
+
" #----#\n",
|
397 |
+
" d.close() #close the file\n",
|
398 |
+
"#------#\n",
|
399 |
+
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
400 |
+
"#------#\n",
|
401 |
+
"\n",
|
402 |
+
"#Print the results\n",
|
403 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
404 |
+
"RANGE = list_size\n",
|
405 |
+
"_suffixes = '{'\n",
|
406 |
+
"_sims = '{'\n",
|
407 |
+
"for index in range(start_at_index + RANGE):\n",
|
408 |
+
" if index < start_at_index : continue\n",
|
409 |
+
" id = int(suffix_indices[index])\n",
|
410 |
+
" ahead = \"from \"\n",
|
411 |
+
" behind = \"\"\n",
|
412 |
+
" if(id>NUM_SUFFIX*1):\n",
|
413 |
+
" ahead = \"a \"\n",
|
414 |
+
" if(id>NUM_SUFFIX*2):\n",
|
415 |
+
" ahead = \"by \"\n",
|
416 |
+
" if(id>NUM_SUFFIX*3):\n",
|
417 |
+
" ahead = \"\"\n",
|
418 |
+
" behind = \"like\"\n",
|
419 |
+
" id = _modulus(id,NUM_SUFFIX)\n",
|
420 |
+
" #------#\n",
|
421 |
+
" sim = suffix_sorted[index].item()\n",
|
422 |
+
" name = ahead + get_suffix(id) + behind\n",
|
423 |
+
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
424 |
+
" _suffixes = _suffixes + name + '|'\n",
|
425 |
+
" _sims = _sims + f'{round(sim,2)} %' + '|'\n",
|
426 |
+
"#------#\n",
|
427 |
+
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
428 |
+
"_sims = (_sims + '}').replace('|}', '}')\n",
|
429 |
+
"#------#\n",
|
430 |
+
"\n",
|
431 |
+
"\n",
|
432 |
+
"suffixes = _suffixes\n",
|
433 |
+
"sims = _sims\n",
|
434 |
+
"if(not print_Suffix): suffixes = ''\n",
|
435 |
+
"if(not print_Similarity): sims = ''\n",
|
436 |
+
"\n",
|
437 |
+
"if(not compact_Output):\n",
|
438 |
+
" if(print_Descriptions):\n",
|
439 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar suffix items to prompt : ' + suffixes)\n",
|
440 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for suffix items : ' + sims)\n",
|
441 |
+
" print('')\n",
|
442 |
+
" else:\n",
|
443 |
+
" print(suffixes)\n",
|
444 |
+
"#-------#\n",
|
445 |
+
"\n",
|
446 |
+
"_prefixes = '{'\n",
|
447 |
+
"for index in range(start_at_index + RANGE):\n",
|
448 |
+
" if index < start_at_index : continue\n",
|
449 |
+
" id = f'{prefix_indices[index]}'\n",
|
450 |
+
" #sim = prefix_sorted[index]\n",
|
451 |
+
" name = get_prefix(id)\n",
|
452 |
+
" _prefixes = _prefixes + name + '|'\n",
|
453 |
+
"#------#\n",
|
454 |
+
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
455 |
+
"\n",
|
456 |
+
"\n",
|
457 |
+
"prefixes = _prefixes\n",
|
458 |
+
"if(not print_Prefix): prefixes = ''\n",
|
459 |
+
"\n",
|
460 |
+
"if(print_Descriptions):\n",
|
461 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar prefixes to prompt : ' + prefixes)\n",
|
462 |
+
"else:\n",
|
463 |
+
" if(compact_Output):\n",
|
464 |
+
" print((prefixes + _suffixes).replace('}{', '|'))\n",
|
465 |
+
" else:\n",
|
466 |
+
" print(prefixes)\n",
|
467 |
+
"\n"
|
468 |
+
],
|
469 |
+
"metadata": {
|
470 |
+
"id": "xc-PbIYF428y"
|
471 |
+
},
|
472 |
+
"execution_count": null,
|
473 |
+
"outputs": []
|
474 |
+
},
|
475 |
{
|
476 |
"cell_type": "markdown",
|
477 |
"source": [
|
|
|
525 |
],
|
526 |
"metadata": {
|
527 |
"id": "ke6mZ1RZDOeB",
|
528 |
+
"outputId": "9f9b5556-6fa7-4aed-e1bc-1704ab0af381",
|
529 |
"colab": {
|
530 |
"base_uri": "https://localhost:8080/",
|
531 |
"height": 1000
|
532 |
}
|
533 |
},
|
534 |
+
"execution_count": 4,
|
535 |
"outputs": [
|
536 |
{
|
537 |
"output_type": "display_data",
|
|
|
548 |
{
|
549 |
"cell_type": "code",
|
550 |
"source": [
|
551 |
+
"# @title 🖼️ Get image_encoding similarity to the pre-calc. text_encodings\n",
|
552 |
+
"\n",
|
553 |
+
"list_size = 100 # @param {type:'number'}\n",
|
554 |
+
"start_at_index = 0 # @param {type:'number'}\n",
|
555 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
556 |
+
"print_Suffix = True # @param {type:\"boolean\"}\n",
|
557 |
+
"print_Prefix = True # @param {type:\"boolean\"}\n",
|
558 |
+
"print_Descriptions = True # @param {type:\"boolean\"}\n",
|
559 |
+
"compact_Output = False # @param {type:\"boolean\"}\n",
|
560 |
"\n",
|
561 |
"from transformers import AutoTokenizer\n",
|
562 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
|
|
614 |
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
615 |
"#------#\n",
|
616 |
"\n",
|
617 |
+
"\n",
|
618 |
"#Print the results\n",
|
619 |
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
620 |
+
"RANGE = list_size\n",
|
621 |
"_suffixes = '{'\n",
|
622 |
"_sims = '{'\n",
|
623 |
+
"for index in range(start_at_index + RANGE):\n",
|
624 |
+
" if index < start_at_index : continue\n",
|
625 |
" id = int(suffix_indices[index])\n",
|
626 |
" ahead = \"from \"\n",
|
627 |
" behind = \"\"\n",
|
|
|
638 |
" name = ahead + get_suffix(id) + behind\n",
|
639 |
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
640 |
" _suffixes = _suffixes + name + '|'\n",
|
641 |
+
" _sims = _sims + f'{round(sim,2)} %' + '|'\n",
|
642 |
"#------#\n",
|
643 |
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
644 |
"_sims = (_sims + '}').replace('|}', '}')\n",
|
645 |
+
"#------#\n",
|
646 |
"\n",
|
647 |
+
"suffixes = _suffixes\n",
|
648 |
+
"sims = _sims\n",
|
649 |
+
"\n",
|
650 |
+
"if(not print_Suffix): suffixes = ''\n",
|
651 |
+
"if(not print_Similarity): sims = ''\n",
|
652 |
"\n",
|
653 |
+
"if(not compact_Output):\n",
|
654 |
+
" if(print_Descriptions):\n",
|
655 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar suffix items to prompt : ' + suffixes)\n",
|
656 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} similarity % for suffix items : ' + sims)\n",
|
657 |
+
" print('')\n",
|
658 |
+
" else:\n",
|
659 |
+
" print(suffixes)\n",
|
660 |
"#-------#\n",
|
661 |
"\n",
|
662 |
"_prefixes = '{'\n",
|
663 |
+
"for index in range(start_at_index + RANGE):\n",
|
664 |
+
" if index < start_at_index : continue\n",
|
665 |
" id = f'{prefix_indices[index]}'\n",
|
666 |
" #sim = prefix_sorted[index]\n",
|
667 |
" name = get_prefix(id)\n",
|
668 |
" _prefixes = _prefixes + name + '|'\n",
|
669 |
"#------#\n",
|
670 |
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
671 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
"\n",
|
673 |
+
"prefixes = _prefixes\n",
|
674 |
+
"if(not print_Prefix): prefixes = ''\n",
|
675 |
"\n",
|
676 |
+
"if(print_Descriptions):\n",
|
677 |
+
" print(f'The {start_at_index}-{start_at_index + RANGE} most similiar prefixes to prompt : ' + prefixes)\n",
|
678 |
+
"else:\n",
|
679 |
+
" if(compact_Output):\n",
|
680 |
+
" print((prefixes + _suffixes).replace('}{', '|'))\n",
|
681 |
+
" else:\n",
|
682 |
+
" print(prefixes)\n"
|
|
|
|
|
683 |
],
|
684 |
"metadata": {
|
685 |
+
"id": "rebogpoyOG8k"
|
686 |
},
|
687 |
"execution_count": null,
|
688 |
"outputs": []
|