Upload sd_token_similarity_calculator.ipynb
Browse files- sd_token_similarity_calculator.ipynb +194 -153
sd_token_similarity_calculator.ipynb
CHANGED
@@ -160,6 +160,114 @@
|
|
160 |
"execution_count": null,
|
161 |
"outputs": []
|
162 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
{
|
164 |
"cell_type": "code",
|
165 |
"source": [
|
@@ -313,119 +421,6 @@
|
|
313 |
"execution_count": null,
|
314 |
"outputs": []
|
315 |
},
|
316 |
-
{
|
317 |
-
"cell_type": "code",
|
318 |
-
"source": [
|
319 |
-
"# @title 📝 Prompt similarity: Order pre-made text_encodings\n",
|
320 |
-
"prompt = \"photo of a banana\" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
321 |
-
"from transformers import AutoTokenizer\n",
|
322 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
323 |
-
"from transformers import CLIPProcessor, CLIPModel\n",
|
324 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
325 |
-
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
326 |
-
"\n",
|
327 |
-
"# Get text features for user input\n",
|
328 |
-
"inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
329 |
-
"text_features_A = model.get_text_features(**inputs)\n",
|
330 |
-
"text_features_A = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
331 |
-
"name_A = prompt\n",
|
332 |
-
"#------#\n",
|
333 |
-
"\n",
|
334 |
-
"# Load the .db file for prefix encodings\n",
|
335 |
-
"import shelve\n",
|
336 |
-
"_iters = -1\n",
|
337 |
-
"RANGE = NUM_PREFIX\n",
|
338 |
-
"NUM_PREFIX_LISTS = 1\n",
|
339 |
-
"dots = results_sim = torch.zeros(RANGE*NUM_PREFIX_LISTS)\n",
|
340 |
-
"for _PREFIX_ENC_VOCAB in PREFIX_ENC_VOCAB:\n",
|
341 |
-
" _iters = _iters + 1\n",
|
342 |
-
" d = shelve.open(_PREFIX_ENC_VOCAB)\n",
|
343 |
-
" for _index in range(RANGE):\n",
|
344 |
-
" index = _iters*RANGE + _index\n",
|
345 |
-
" text_features = d[f'{_index}']\n",
|
346 |
-
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
347 |
-
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
348 |
-
" dots[index] = sim\n",
|
349 |
-
" #----#\n",
|
350 |
-
" d.close() #close the file\n",
|
351 |
-
"#------#\n",
|
352 |
-
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
353 |
-
"#------#\n",
|
354 |
-
"\n",
|
355 |
-
"# Load the .db file for prefix encodings\n",
|
356 |
-
"import shelve\n",
|
357 |
-
"_iters = -1\n",
|
358 |
-
"RANGE = NUM_SUFFIX\n",
|
359 |
-
"dots = results_sim = torch.zeros(RANGE*NUM_SUFFIX_LISTS)\n",
|
360 |
-
"for _SUFFIX_ENC_VOCAB in SUFFIX_ENC_VOCAB:\n",
|
361 |
-
" _iters = _iters + 1\n",
|
362 |
-
" d = shelve.open(_SUFFIX_ENC_VOCAB)\n",
|
363 |
-
" for _index in range(RANGE):\n",
|
364 |
-
" index = _iters*RANGE + _index\n",
|
365 |
-
" text_features = d[f'{_index}']\n",
|
366 |
-
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
367 |
-
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
368 |
-
" dots[index] = sim\n",
|
369 |
-
" #----#\n",
|
370 |
-
" d.close() #close the file\n",
|
371 |
-
"#------#\n",
|
372 |
-
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
373 |
-
"#------#\n",
|
374 |
-
"\n",
|
375 |
-
"#Print the results\n",
|
376 |
-
"#'from_-encoded_suffix',\n",
|
377 |
-
"#'a_-_encoded_suffix' ,\n",
|
378 |
-
"#'by_-encoded_suffix' ,\n",
|
379 |
-
"#'encoded_suffix-_like'\n",
|
380 |
-
"\n",
|
381 |
-
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
382 |
-
"RANGE = 100\n",
|
383 |
-
"_suffixes = '{'\n",
|
384 |
-
"_sims = '{'\n",
|
385 |
-
"for index in range(RANGE):\n",
|
386 |
-
" id = int(suffix_indices[index])\n",
|
387 |
-
" ahead = \"from \"\n",
|
388 |
-
" behind = \"\"\n",
|
389 |
-
" if(id>NUM_SUFFIX*1):\n",
|
390 |
-
" ahead = \"a \"\n",
|
391 |
-
" if(id>NUM_SUFFIX*2):\n",
|
392 |
-
" ahead = \"by \"\n",
|
393 |
-
" if(id>NUM_SUFFIX*3):\n",
|
394 |
-
" ahead = \"\"\n",
|
395 |
-
" behind = \"like\"\n",
|
396 |
-
" id = _modulus(id,NUM_SUFFIX)\n",
|
397 |
-
" #------#\n",
|
398 |
-
" sim = suffix_sorted[index].item()\n",
|
399 |
-
" name = ahead + get_suffix(id) + behind\n",
|
400 |
-
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
401 |
-
" _suffixes = _suffixes + name + '|'\n",
|
402 |
-
" _sims = _sims + f'{round(sim*100,2)} %' + '|'\n",
|
403 |
-
"#------#\n",
|
404 |
-
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
405 |
-
"_sims = (_sims + '}').replace('|}', '}')\n",
|
406 |
-
"\n",
|
407 |
-
"print('most similiar suffix items to prompt : ' + _suffixes)\n",
|
408 |
-
"print('similarity % for suffix items : ' + _sims)\n",
|
409 |
-
"print('')\n",
|
410 |
-
"\n",
|
411 |
-
"#-------#\n",
|
412 |
-
"\n",
|
413 |
-
"_prefixes = '{'\n",
|
414 |
-
"for index in range(RANGE):\n",
|
415 |
-
" id = f'{prefix_indices[index]}'\n",
|
416 |
-
" #sim = prefix_sorted[index]\n",
|
417 |
-
" name = get_prefix(id)\n",
|
418 |
-
" _prefixes = _prefixes + name + '|'\n",
|
419 |
-
"#------#\n",
|
420 |
-
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
421 |
-
"print('most similiar prefix suffix to image : ' + _prefixes)\n"
|
422 |
-
],
|
423 |
-
"metadata": {
|
424 |
-
"id": "xc-PbIYF428y"
|
425 |
-
},
|
426 |
-
"execution_count": null,
|
427 |
-
"outputs": []
|
428 |
-
},
|
429 |
{
|
430 |
"cell_type": "markdown",
|
431 |
"source": [
|
@@ -479,13 +474,13 @@
|
|
479 |
],
|
480 |
"metadata": {
|
481 |
"id": "ke6mZ1RZDOeB",
|
482 |
-
"outputId": "
|
483 |
"colab": {
|
484 |
"base_uri": "https://localhost:8080/",
|
485 |
"height": 1000
|
486 |
}
|
487 |
},
|
488 |
-
"execution_count":
|
489 |
"outputs": [
|
490 |
{
|
491 |
"output_type": "display_data",
|
@@ -502,7 +497,7 @@
|
|
502 |
{
|
503 |
"cell_type": "code",
|
504 |
"source": [
|
505 |
-
"
|
506 |
"from transformers import AutoTokenizer\n",
|
507 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
508 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
@@ -514,37 +509,96 @@
|
|
514 |
"image_features = model.get_image_features(**inputs)\n",
|
515 |
"image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
516 |
"name_A = \"the image\"\n",
|
|
|
517 |
"\n",
|
518 |
"# Load the .db file for prefix encodings\n",
|
519 |
"import shelve\n",
|
520 |
-
"
|
521 |
-
"
|
522 |
-
"
|
523 |
-
"
|
524 |
-
"
|
525 |
-
"
|
526 |
-
"
|
527 |
-
"
|
528 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
530 |
-
"
|
531 |
"\n",
|
532 |
-
"# Load the .db file for
|
533 |
"import shelve\n",
|
534 |
-
"
|
535 |
-
"
|
536 |
-
"
|
537 |
-
"
|
538 |
-
"
|
539 |
-
"
|
540 |
-
"
|
541 |
-
"
|
542 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
544 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
],
|
546 |
"metadata": {
|
547 |
-
"id": "
|
548 |
},
|
549 |
"execution_count": null,
|
550 |
"outputs": []
|
@@ -577,23 +631,10 @@
|
|
577 |
"print('most similiar prefix tokens to image : ' + _prefixes)\n"
|
578 |
],
|
579 |
"metadata": {
|
580 |
-
"id": "eZqMUhP0qYaK"
|
581 |
-
"outputId": "4801cded-e73c-4c0b-eb6e-608ed899ff49",
|
582 |
-
"colab": {
|
583 |
-
"base_uri": "https://localhost:8080/"
|
584 |
-
}
|
585 |
},
|
586 |
"execution_count": null,
|
587 |
-
"outputs": [
|
588 |
-
{
|
589 |
-
"output_type": "stream",
|
590 |
-
"name": "stdout",
|
591 |
-
"text": [
|
592 |
-
"most similiar suffix tokens to image : {vfx |cleanup |warcraft |defend |avatar |wall |blu |indigo |dfs |bluetooth |orian |alliance |defence |defenses |defense |guardians |descendants |navis |raid |avengersendgame }\n",
|
593 |
-
"most similiar prefix tokens to image : {imperi-|blue-|bluec-|war-|blau-|veer-|blu-|vau-|bloo-|taun-|kavan-|kair-|storm-|anarch-|purple-|honor-|spartan-|swar-|raun-|andor-}\n"
|
594 |
-
]
|
595 |
-
}
|
596 |
-
]
|
597 |
},
|
598 |
{
|
599 |
"cell_type": "code",
|
|
|
160 |
"execution_count": null,
|
161 |
"outputs": []
|
162 |
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"source": [
|
166 |
+
"# @title 📝 Prompt similarity: Order pre-made text_encodings\n",
|
167 |
+
"prompt = \" a fast car on the road \" # @param {\"type\":\"string\",\"placeholder\":\"Write a prompt\"}\n",
|
168 |
+
"from transformers import AutoTokenizer\n",
|
169 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
170 |
+
"from transformers import CLIPProcessor, CLIPModel\n",
|
171 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
172 |
+
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
173 |
+
"\n",
|
174 |
+
"# Get text features for user input\n",
|
175 |
+
"inputs = tokenizer(text = prompt, padding=True, return_tensors=\"pt\")\n",
|
176 |
+
"text_features_A = model.get_text_features(**inputs)\n",
|
177 |
+
"text_features_A = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
178 |
+
"name_A = prompt\n",
|
179 |
+
"#------#\n",
|
180 |
+
"\n",
|
181 |
+
"# Load the .db file for prefix encodings\n",
|
182 |
+
"import shelve\n",
|
183 |
+
"_iters = -1\n",
|
184 |
+
"RANGE = NUM_PREFIX\n",
|
185 |
+
"NUM_PREFIX_LISTS = 1\n",
|
186 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_PREFIX_LISTS)\n",
|
187 |
+
"for _PREFIX_ENC_VOCAB in PREFIX_ENC_VOCAB:\n",
|
188 |
+
" _iters = _iters + 1\n",
|
189 |
+
" d = shelve.open(_PREFIX_ENC_VOCAB)\n",
|
190 |
+
" for _index in range(RANGE):\n",
|
191 |
+
" index = _iters*RANGE + _index\n",
|
192 |
+
" text_features = d[f'{_index}']\n",
|
193 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
194 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
195 |
+
" dots[index] = sim\n",
|
196 |
+
" #----#\n",
|
197 |
+
" d.close() #close the file\n",
|
198 |
+
"#------#\n",
|
199 |
+
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
200 |
+
"#------#\n",
|
201 |
+
"\n",
|
202 |
+
"# Load the .db file for prefix encodings\n",
|
203 |
+
"import shelve\n",
|
204 |
+
"_iters = -1\n",
|
205 |
+
"RANGE = NUM_SUFFIX\n",
|
206 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_SUFFIX_LISTS)\n",
|
207 |
+
"for _SUFFIX_ENC_VOCAB in SUFFIX_ENC_VOCAB:\n",
|
208 |
+
" _iters = _iters + 1\n",
|
209 |
+
" d = shelve.open(_SUFFIX_ENC_VOCAB)\n",
|
210 |
+
" for _index in range(RANGE):\n",
|
211 |
+
" index = _iters*RANGE + _index\n",
|
212 |
+
" text_features = d[f'{_index}']\n",
|
213 |
+
" text_features = text_features/text_features.norm(p=2, dim=-1, keepdim=True)\n",
|
214 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, text_features_A)\n",
|
215 |
+
" dots[index] = sim\n",
|
216 |
+
" #----#\n",
|
217 |
+
" d.close() #close the file\n",
|
218 |
+
"#------#\n",
|
219 |
+
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
220 |
+
"#------#\n",
|
221 |
+
"\n",
|
222 |
+
"#Print the results\n",
|
223 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
224 |
+
"RANGE = 30\n",
|
225 |
+
"_suffixes = '{'\n",
|
226 |
+
"_sims = '{'\n",
|
227 |
+
"for index in range(RANGE):\n",
|
228 |
+
" id = int(suffix_indices[index])\n",
|
229 |
+
" ahead = \"from \"\n",
|
230 |
+
" behind = \"\"\n",
|
231 |
+
" if(id>NUM_SUFFIX*1):\n",
|
232 |
+
" ahead = \"a \"\n",
|
233 |
+
" if(id>NUM_SUFFIX*2):\n",
|
234 |
+
" ahead = \"by \"\n",
|
235 |
+
" if(id>NUM_SUFFIX*3):\n",
|
236 |
+
" ahead = \"\"\n",
|
237 |
+
" behind = \"like\"\n",
|
238 |
+
" id = _modulus(id,NUM_SUFFIX)\n",
|
239 |
+
" #------#\n",
|
240 |
+
" sim = suffix_sorted[index].item()\n",
|
241 |
+
" name = ahead + get_suffix(id) + behind\n",
|
242 |
+
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
243 |
+
" _suffixes = _suffixes + name + '|'\n",
|
244 |
+
" _sims = _sims + f'{round(sim*100,2)} %' + '|'\n",
|
245 |
+
"#------#\n",
|
246 |
+
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
247 |
+
"_sims = (_sims + '}').replace('|}', '}')\n",
|
248 |
+
"\n",
|
249 |
+
"print('most similiar suffix items to prompt : ' + _suffixes)\n",
|
250 |
+
"print('similarity % for suffix items : ' + _sims)\n",
|
251 |
+
"print('')\n",
|
252 |
+
"\n",
|
253 |
+
"#-------#\n",
|
254 |
+
"\n",
|
255 |
+
"_prefixes = '{'\n",
|
256 |
+
"for index in range(RANGE):\n",
|
257 |
+
" id = f'{prefix_indices[index]}'\n",
|
258 |
+
" #sim = prefix_sorted[index]\n",
|
259 |
+
" name = get_prefix(id)\n",
|
260 |
+
" _prefixes = _prefixes + name + '|'\n",
|
261 |
+
"#------#\n",
|
262 |
+
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
263 |
+
"print('most similiar prefix suffix to image : ' + _prefixes)\n"
|
264 |
+
],
|
265 |
+
"metadata": {
|
266 |
+
"id": "xc-PbIYF428y"
|
267 |
+
},
|
268 |
+
"execution_count": null,
|
269 |
+
"outputs": []
|
270 |
+
},
|
271 |
{
|
272 |
"cell_type": "code",
|
273 |
"source": [
|
|
|
421 |
"execution_count": null,
|
422 |
"outputs": []
|
423 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
{
|
425 |
"cell_type": "markdown",
|
426 |
"source": [
|
|
|
474 |
],
|
475 |
"metadata": {
|
476 |
"id": "ke6mZ1RZDOeB",
|
477 |
+
"outputId": "f98f9ea5-32d1-4cf7-b523-1c6b6e6792a2",
|
478 |
"colab": {
|
479 |
"base_uri": "https://localhost:8080/",
|
480 |
"height": 1000
|
481 |
}
|
482 |
},
|
483 |
+
"execution_count": 2,
|
484 |
"outputs": [
|
485 |
{
|
486 |
"output_type": "display_data",
|
|
|
497 |
{
|
498 |
"cell_type": "code",
|
499 |
"source": [
|
500 |
+
"\n",
|
501 |
"from transformers import AutoTokenizer\n",
|
502 |
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
503 |
"from transformers import CLIPProcessor, CLIPModel\n",
|
|
|
509 |
"image_features = model.get_image_features(**inputs)\n",
|
510 |
"image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)\n",
|
511 |
"name_A = \"the image\"\n",
|
512 |
+
"#-----#\n",
|
513 |
"\n",
|
514 |
"# Load the .db file for prefix encodings\n",
|
515 |
"import shelve\n",
|
516 |
+
"_iters = -1\n",
|
517 |
+
"RANGE = NUM_PREFIX\n",
|
518 |
+
"NUM_PREFIX_LISTS = 1\n",
|
519 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_PREFIX_LISTS)\n",
|
520 |
+
"for _PREFIX_ENC_VOCAB in PREFIX_ENC_VOCAB:\n",
|
521 |
+
" _iters = _iters + 1\n",
|
522 |
+
" d = shelve.open(_PREFIX_ENC_VOCAB)\n",
|
523 |
+
" for _index in range(RANGE):\n",
|
524 |
+
" index = _iters*RANGE + _index\n",
|
525 |
+
" text_features = d[f'{_index}']\n",
|
526 |
+
" logit_scale = model.logit_scale.exp()\n",
|
527 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
528 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
529 |
+
" dots[index] = sim\n",
|
530 |
+
" #----#\n",
|
531 |
+
" d.close() #close the file\n",
|
532 |
+
"#------#\n",
|
533 |
"prefix_sorted, prefix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
534 |
+
"#------#\n",
|
535 |
"\n",
|
536 |
+
"# Load the .db file for prefix encodings\n",
|
537 |
"import shelve\n",
|
538 |
+
"_iters = -1\n",
|
539 |
+
"RANGE = NUM_SUFFIX\n",
|
540 |
+
"dots = results_sim = torch.zeros(RANGE*NUM_SUFFIX_LISTS)\n",
|
541 |
+
"for _SUFFIX_ENC_VOCAB in SUFFIX_ENC_VOCAB:\n",
|
542 |
+
" _iters = _iters + 1\n",
|
543 |
+
" d = shelve.open(_SUFFIX_ENC_VOCAB)\n",
|
544 |
+
" for _index in range(RANGE):\n",
|
545 |
+
" index = _iters*RANGE + _index\n",
|
546 |
+
" text_features = d[f'{_index}']\n",
|
547 |
+
" logit_scale = model.logit_scale.exp()\n",
|
548 |
+
" torch.matmul(text_features, image_features.t()) * logit_scale\n",
|
549 |
+
" sim = torch.nn.functional.cosine_similarity(text_features, image_features) * logit_scale\n",
|
550 |
+
" dots[index] = sim\n",
|
551 |
+
" #----#\n",
|
552 |
+
" d.close() #close the file\n",
|
553 |
+
"#------#\n",
|
554 |
"suffix_sorted, suffix_indices = torch.sort(dots,dim=0 , descending=True)\n",
|
555 |
+
"#------#\n",
|
556 |
+
"\n",
|
557 |
+
"#Print the results\n",
|
558 |
+
"# title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
559 |
+
"RANGE = 30\n",
|
560 |
+
"_suffixes = '{'\n",
|
561 |
+
"_sims = '{'\n",
|
562 |
+
"for index in range(RANGE):\n",
|
563 |
+
" id = int(suffix_indices[index])\n",
|
564 |
+
" ahead = \"from \"\n",
|
565 |
+
" behind = \"\"\n",
|
566 |
+
" if(id>NUM_SUFFIX*1):\n",
|
567 |
+
" ahead = \"a \"\n",
|
568 |
+
" if(id>NUM_SUFFIX*2):\n",
|
569 |
+
" ahead = \"by \"\n",
|
570 |
+
" if(id>NUM_SUFFIX*3):\n",
|
571 |
+
" ahead = \"\"\n",
|
572 |
+
" behind = \"like\"\n",
|
573 |
+
" id = _modulus(id,NUM_SUFFIX)\n",
|
574 |
+
" #------#\n",
|
575 |
+
" sim = suffix_sorted[index].item()\n",
|
576 |
+
" name = ahead + get_suffix(id) + behind\n",
|
577 |
+
" if(get_suffix(id) == ' '): name = ahead + f'{id}' + behind\n",
|
578 |
+
" _suffixes = _suffixes + name + '|'\n",
|
579 |
+
" _sims = _sims + f'{round(sim*100,2)} %' + '|'\n",
|
580 |
+
"#------#\n",
|
581 |
+
"_suffixes = (_suffixes + '}').replace('|}', '}')\n",
|
582 |
+
"_sims = (_sims + '}').replace('|}', '}')\n",
|
583 |
+
"\n",
|
584 |
+
"print('most similiar suffix items to prompt : ' + _suffixes)\n",
|
585 |
+
"print('similarity % for suffix items : ' + _sims)\n",
|
586 |
+
"print('')\n",
|
587 |
+
"\n",
|
588 |
+
"#-------#\n",
|
589 |
+
"\n",
|
590 |
+
"_prefixes = '{'\n",
|
591 |
+
"for index in range(RANGE):\n",
|
592 |
+
" id = f'{prefix_indices[index]}'\n",
|
593 |
+
" #sim = prefix_sorted[index]\n",
|
594 |
+
" name = get_prefix(id)\n",
|
595 |
+
" _prefixes = _prefixes + name + '|'\n",
|
596 |
+
"#------#\n",
|
597 |
+
"_prefixes = (_prefixes + '}').replace('|}', '}')\n",
|
598 |
+
"print('most similiar prefix suffix to image : ' + _prefixes)\n"
|
599 |
],
|
600 |
"metadata": {
|
601 |
+
"id": "rebogpoyOG8k"
|
602 |
},
|
603 |
"execution_count": null,
|
604 |
"outputs": []
|
|
|
631 |
"print('most similiar prefix tokens to image : ' + _prefixes)\n"
|
632 |
],
|
633 |
"metadata": {
|
634 |
+
"id": "eZqMUhP0qYaK"
|
|
|
|
|
|
|
|
|
635 |
},
|
636 |
"execution_count": null,
|
637 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
},
|
639 |
{
|
640 |
"cell_type": "code",
|