Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pt
|
4 |
+
license: apache-2.0
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- text-generation-inference
|
8 |
+
- llama-cpp
|
9 |
+
- gguf-my-repo
|
10 |
+
datasets:
|
11 |
+
- nicholasKluge/instruct-aira-dataset-v3
|
12 |
+
- cnmoro/GPT4-500k-Augmented-PTBR-Clean
|
13 |
+
- rhaymison/orca-math-portuguese-64k
|
14 |
+
- nicholasKluge/reward-aira-dataset
|
15 |
+
metrics:
|
16 |
+
- perplexity
|
17 |
+
pipeline_tag: text-generation
|
18 |
+
widget:
|
19 |
+
- text: <instruction>Cite algumas bandas de rock brasileiras famosas.</instruction>
|
20 |
+
example_title: Exemplo
|
21 |
+
- text: <instruction>Invente uma história sobre um encanador com poderes mágicos.</instruction>
|
22 |
+
example_title: Exemplo
|
23 |
+
- text: <instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction>
|
24 |
+
example_title: Exemplo
|
25 |
+
- text: <instruction>Diga o nome de uma maravilha culinária característica da cosinha
|
26 |
+
Portuguesa?</instruction>
|
27 |
+
example_title: Exemplo
|
28 |
+
inference:
|
29 |
+
parameters:
|
30 |
+
repetition_penalty: 1.2
|
31 |
+
temperature: 0.2
|
32 |
+
top_k: 20
|
33 |
+
top_p: 0.2
|
34 |
+
max_new_tokens: 150
|
35 |
+
co2_eq_emissions:
|
36 |
+
emissions: 42270
|
37 |
+
source: CodeCarbon
|
38 |
+
training_type: pre-training
|
39 |
+
geographical_location: Germany
|
40 |
+
hardware_used: NVIDIA A100-SXM4-80GB
|
41 |
+
base_model: TucanoBR/Tucano-2b4-Instruct
|
42 |
+
model-index:
|
43 |
+
- name: Tucano-2b4-Instruct
|
44 |
+
results:
|
45 |
+
- task:
|
46 |
+
type: text-generation
|
47 |
+
name: Text Generation
|
48 |
+
dataset:
|
49 |
+
name: CALAME-PT
|
50 |
+
type: NOVA-vision-language/calame-pt
|
51 |
+
split: all
|
52 |
+
args:
|
53 |
+
num_few_shot: 0
|
54 |
+
metrics:
|
55 |
+
- type: acc
|
56 |
+
value: 57.66
|
57 |
+
name: accuracy
|
58 |
+
source:
|
59 |
+
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
|
60 |
+
name: Context-Aware LAnguage Modeling Evaluation for Portuguese
|
61 |
+
- task:
|
62 |
+
type: text-generation
|
63 |
+
name: Text Generation
|
64 |
+
dataset:
|
65 |
+
name: LAMBADA-PT
|
66 |
+
type: TucanoBR/lambada-pt
|
67 |
+
split: train
|
68 |
+
args:
|
69 |
+
num_few_shot: 0
|
70 |
+
metrics:
|
71 |
+
- type: acc
|
72 |
+
value: 39.92
|
73 |
+
name: accuracy
|
74 |
+
source:
|
75 |
+
url: https://huggingface.co/datasets/TucanoBR/lambada-pt
|
76 |
+
name: LAMBADA-PT
|
77 |
+
- task:
|
78 |
+
type: text-generation
|
79 |
+
name: Text Generation
|
80 |
+
dataset:
|
81 |
+
name: ENEM Challenge (No Images)
|
82 |
+
type: eduagarcia/enem_challenge
|
83 |
+
split: train
|
84 |
+
args:
|
85 |
+
num_few_shot: 3
|
86 |
+
metrics:
|
87 |
+
- type: acc
|
88 |
+
value: 20.43
|
89 |
+
name: accuracy
|
90 |
+
source:
|
91 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
92 |
+
name: Open Portuguese LLM Leaderboard
|
93 |
+
- task:
|
94 |
+
type: text-generation
|
95 |
+
name: Text Generation
|
96 |
+
dataset:
|
97 |
+
name: BLUEX (No Images)
|
98 |
+
type: eduagarcia-temp/BLUEX_without_images
|
99 |
+
split: train
|
100 |
+
args:
|
101 |
+
num_few_shot: 3
|
102 |
+
metrics:
|
103 |
+
- type: acc
|
104 |
+
value: 22.81
|
105 |
+
name: accuracy
|
106 |
+
source:
|
107 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
108 |
+
name: Open Portuguese LLM Leaderboard
|
109 |
+
- task:
|
110 |
+
type: text-generation
|
111 |
+
name: Text Generation
|
112 |
+
dataset:
|
113 |
+
name: OAB Exams
|
114 |
+
type: eduagarcia/oab_exams
|
115 |
+
split: train
|
116 |
+
args:
|
117 |
+
num_few_shot: 3
|
118 |
+
metrics:
|
119 |
+
- type: acc
|
120 |
+
value: 24.83
|
121 |
+
name: accuracy
|
122 |
+
source:
|
123 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
124 |
+
name: Open Portuguese LLM Leaderboard
|
125 |
+
- task:
|
126 |
+
type: text-generation
|
127 |
+
name: Text Generation
|
128 |
+
dataset:
|
129 |
+
name: Assin2 RTE
|
130 |
+
type: assin2
|
131 |
+
split: test
|
132 |
+
args:
|
133 |
+
num_few_shot: 15
|
134 |
+
metrics:
|
135 |
+
- type: f1_macro
|
136 |
+
value: 43.39
|
137 |
+
name: f1-macro
|
138 |
+
source:
|
139 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
140 |
+
name: Open Portuguese LLM Leaderboard
|
141 |
+
- task:
|
142 |
+
type: text-generation
|
143 |
+
name: Text Generation
|
144 |
+
dataset:
|
145 |
+
name: Assin2 STS
|
146 |
+
type: eduagarcia/portuguese_benchmark
|
147 |
+
split: test
|
148 |
+
args:
|
149 |
+
num_few_shot: 10
|
150 |
+
metrics:
|
151 |
+
- type: pearson
|
152 |
+
value: 6.31
|
153 |
+
name: pearson
|
154 |
+
source:
|
155 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
156 |
+
name: Open Portuguese LLM Leaderboard
|
157 |
+
- task:
|
158 |
+
type: text-generation
|
159 |
+
name: Text Generation
|
160 |
+
dataset:
|
161 |
+
name: FaQuAD NLI
|
162 |
+
type: ruanchaves/faquad-nli
|
163 |
+
split: test
|
164 |
+
args:
|
165 |
+
num_few_shot: 15
|
166 |
+
metrics:
|
167 |
+
- type: f1_macro
|
168 |
+
value: 43.97
|
169 |
+
name: f1-macro
|
170 |
+
source:
|
171 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
172 |
+
name: Open Portuguese LLM Leaderboard
|
173 |
+
- task:
|
174 |
+
type: text-generation
|
175 |
+
name: Text Generation
|
176 |
+
dataset:
|
177 |
+
name: HateBR Binary
|
178 |
+
type: ruanchaves/hatebr
|
179 |
+
split: test
|
180 |
+
args:
|
181 |
+
num_few_shot: 25
|
182 |
+
metrics:
|
183 |
+
- type: f1_macro
|
184 |
+
value: 27.7
|
185 |
+
name: f1-macro
|
186 |
+
source:
|
187 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
188 |
+
name: Open Portuguese LLM Leaderboard
|
189 |
+
- task:
|
190 |
+
type: text-generation
|
191 |
+
name: Text Generation
|
192 |
+
dataset:
|
193 |
+
name: PT Hate Speech Binary
|
194 |
+
type: hate_speech_portuguese
|
195 |
+
split: test
|
196 |
+
args:
|
197 |
+
num_few_shot: 25
|
198 |
+
metrics:
|
199 |
+
- type: f1_macro
|
200 |
+
value: 29.18
|
201 |
+
name: f1-macro
|
202 |
+
source:
|
203 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
204 |
+
name: Open Portuguese LLM Leaderboard
|
205 |
+
- task:
|
206 |
+
type: text-generation
|
207 |
+
name: Text Generation
|
208 |
+
dataset:
|
209 |
+
name: tweetSentBR
|
210 |
+
type: eduagarcia-temp/tweetsentbr
|
211 |
+
split: test
|
212 |
+
args:
|
213 |
+
num_few_shot: 25
|
214 |
+
metrics:
|
215 |
+
- type: f1_macro
|
216 |
+
value: 43.11
|
217 |
+
name: f1-macro
|
218 |
+
source:
|
219 |
+
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
|
220 |
+
name: Open Portuguese LLM Leaderboard
|
221 |
+
- task:
|
222 |
+
type: text-generation
|
223 |
+
name: Text Generation
|
224 |
+
dataset:
|
225 |
+
name: ARC-Challenge (PT)
|
226 |
+
type: arc_pt
|
227 |
+
args:
|
228 |
+
num_few_shot: 25
|
229 |
+
metrics:
|
230 |
+
- type: acc_norm
|
231 |
+
value: 32.05
|
232 |
+
name: normalized accuracy
|
233 |
+
source:
|
234 |
+
url: https://github.com/nlp-uoregon/mlmm-evaluation
|
235 |
+
name: Evaluation Framework for Multilingual Large Language Models
|
236 |
+
- task:
|
237 |
+
type: text-generation
|
238 |
+
name: Text Generation
|
239 |
+
dataset:
|
240 |
+
name: HellaSwag (PT)
|
241 |
+
type: hellaswag_pt
|
242 |
+
args:
|
243 |
+
num_few_shot: 10
|
244 |
+
metrics:
|
245 |
+
- type: acc_norm
|
246 |
+
value: 48.28
|
247 |
+
name: normalized accuracy
|
248 |
+
source:
|
249 |
+
url: https://github.com/nlp-uoregon/mlmm-evaluation
|
250 |
+
name: Evaluation Framework for Multilingual Large Language Models
|
251 |
+
- task:
|
252 |
+
type: text-generation
|
253 |
+
name: Text Generation
|
254 |
+
dataset:
|
255 |
+
name: TruthfulQA (PT)
|
256 |
+
type: truthfulqa_pt
|
257 |
+
args:
|
258 |
+
num_few_shot: 0
|
259 |
+
metrics:
|
260 |
+
- type: mc2
|
261 |
+
value: 38.44
|
262 |
+
name: bleurt
|
263 |
+
source:
|
264 |
+
url: https://github.com/nlp-uoregon/mlmm-evaluation
|
265 |
+
name: Evaluation Framework for Multilingual Large Language Models
|
266 |
+
- task:
|
267 |
+
type: text-generation
|
268 |
+
name: Text Generation
|
269 |
+
dataset:
|
270 |
+
name: Alpaca-Eval (PT)
|
271 |
+
type: alpaca_eval_pt
|
272 |
+
args:
|
273 |
+
num_few_shot: 0
|
274 |
+
metrics:
|
275 |
+
- type: lc_winrate
|
276 |
+
value: 13.0
|
277 |
+
name: length controlled winrate
|
278 |
+
source:
|
279 |
+
url: https://github.com/tatsu-lab/alpaca_eval
|
280 |
+
name: AlpacaEval
|
281 |
+
---
|
282 |
+
|
283 |
+
# cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF
|
284 |
+
This model was converted to GGUF format from [`TucanoBR/Tucano-2b4-Instruct`](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
285 |
+
Refer to the [original model card](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) for more details on the model.
|
286 |
+
|
287 |
+
## Use with llama.cpp
|
288 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
289 |
+
|
290 |
+
```bash
|
291 |
+
brew install llama.cpp
|
292 |
+
|
293 |
+
```
|
294 |
+
Invoke the llama.cpp server or the CLI.
|
295 |
+
|
296 |
+
### CLI:
|
297 |
+
```bash
|
298 |
+
llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
|
299 |
+
```
|
300 |
+
|
301 |
+
### Server:
|
302 |
+
```bash
|
303 |
+
llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
|
304 |
+
```
|
305 |
+
|
306 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
307 |
+
|
308 |
+
Step 1: Clone llama.cpp from GitHub.
|
309 |
+
```
|
310 |
+
git clone https://github.com/ggerganov/llama.cpp
|
311 |
+
```
|
312 |
+
|
313 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
314 |
+
```
|
315 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
316 |
+
```
|
317 |
+
|
318 |
+
Step 3: Run inference through the main binary.
|
319 |
+
```
|
320 |
+
./llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
|
321 |
+
```
|
322 |
+
or
|
323 |
+
```
|
324 |
+
./llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
|
325 |
+
```
|