cnmoro commited on
Commit
fd3d86f
·
verified ·
1 Parent(s): b999f29

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +325 -0
README.md ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pt
4
+ license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - text-generation-inference
8
+ - llama-cpp
9
+ - gguf-my-repo
10
+ datasets:
11
+ - nicholasKluge/instruct-aira-dataset-v3
12
+ - cnmoro/GPT4-500k-Augmented-PTBR-Clean
13
+ - rhaymison/orca-math-portuguese-64k
14
+ - nicholasKluge/reward-aira-dataset
15
+ metrics:
16
+ - perplexity
17
+ pipeline_tag: text-generation
18
+ widget:
19
+ - text: <instruction>Cite algumas bandas de rock brasileiras famosas.</instruction>
20
+ example_title: Exemplo
21
+ - text: <instruction>Invente uma história sobre um encanador com poderes mágicos.</instruction>
22
+ example_title: Exemplo
23
+ - text: <instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction>
24
+ example_title: Exemplo
25
+ - text: <instruction>Diga o nome de uma maravilha culinária característica da cosinha
26
+ Portuguesa?</instruction>
27
+ example_title: Exemplo
28
+ inference:
29
+ parameters:
30
+ repetition_penalty: 1.2
31
+ temperature: 0.2
32
+ top_k: 20
33
+ top_p: 0.2
34
+ max_new_tokens: 150
35
+ co2_eq_emissions:
36
+ emissions: 42270
37
+ source: CodeCarbon
38
+ training_type: pre-training
39
+ geographical_location: Germany
40
+ hardware_used: NVIDIA A100-SXM4-80GB
41
+ base_model: TucanoBR/Tucano-2b4-Instruct
42
+ model-index:
43
+ - name: Tucano-2b4-Instruct
44
+ results:
45
+ - task:
46
+ type: text-generation
47
+ name: Text Generation
48
+ dataset:
49
+ name: CALAME-PT
50
+ type: NOVA-vision-language/calame-pt
51
+ split: all
52
+ args:
53
+ num_few_shot: 0
54
+ metrics:
55
+ - type: acc
56
+ value: 57.66
57
+ name: accuracy
58
+ source:
59
+ url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
60
+ name: Context-Aware LAnguage Modeling Evaluation for Portuguese
61
+ - task:
62
+ type: text-generation
63
+ name: Text Generation
64
+ dataset:
65
+ name: LAMBADA-PT
66
+ type: TucanoBR/lambada-pt
67
+ split: train
68
+ args:
69
+ num_few_shot: 0
70
+ metrics:
71
+ - type: acc
72
+ value: 39.92
73
+ name: accuracy
74
+ source:
75
+ url: https://huggingface.co/datasets/TucanoBR/lambada-pt
76
+ name: LAMBADA-PT
77
+ - task:
78
+ type: text-generation
79
+ name: Text Generation
80
+ dataset:
81
+ name: ENEM Challenge (No Images)
82
+ type: eduagarcia/enem_challenge
83
+ split: train
84
+ args:
85
+ num_few_shot: 3
86
+ metrics:
87
+ - type: acc
88
+ value: 20.43
89
+ name: accuracy
90
+ source:
91
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
92
+ name: Open Portuguese LLM Leaderboard
93
+ - task:
94
+ type: text-generation
95
+ name: Text Generation
96
+ dataset:
97
+ name: BLUEX (No Images)
98
+ type: eduagarcia-temp/BLUEX_without_images
99
+ split: train
100
+ args:
101
+ num_few_shot: 3
102
+ metrics:
103
+ - type: acc
104
+ value: 22.81
105
+ name: accuracy
106
+ source:
107
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
108
+ name: Open Portuguese LLM Leaderboard
109
+ - task:
110
+ type: text-generation
111
+ name: Text Generation
112
+ dataset:
113
+ name: OAB Exams
114
+ type: eduagarcia/oab_exams
115
+ split: train
116
+ args:
117
+ num_few_shot: 3
118
+ metrics:
119
+ - type: acc
120
+ value: 24.83
121
+ name: accuracy
122
+ source:
123
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
124
+ name: Open Portuguese LLM Leaderboard
125
+ - task:
126
+ type: text-generation
127
+ name: Text Generation
128
+ dataset:
129
+ name: Assin2 RTE
130
+ type: assin2
131
+ split: test
132
+ args:
133
+ num_few_shot: 15
134
+ metrics:
135
+ - type: f1_macro
136
+ value: 43.39
137
+ name: f1-macro
138
+ source:
139
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
140
+ name: Open Portuguese LLM Leaderboard
141
+ - task:
142
+ type: text-generation
143
+ name: Text Generation
144
+ dataset:
145
+ name: Assin2 STS
146
+ type: eduagarcia/portuguese_benchmark
147
+ split: test
148
+ args:
149
+ num_few_shot: 10
150
+ metrics:
151
+ - type: pearson
152
+ value: 6.31
153
+ name: pearson
154
+ source:
155
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
156
+ name: Open Portuguese LLM Leaderboard
157
+ - task:
158
+ type: text-generation
159
+ name: Text Generation
160
+ dataset:
161
+ name: FaQuAD NLI
162
+ type: ruanchaves/faquad-nli
163
+ split: test
164
+ args:
165
+ num_few_shot: 15
166
+ metrics:
167
+ - type: f1_macro
168
+ value: 43.97
169
+ name: f1-macro
170
+ source:
171
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
172
+ name: Open Portuguese LLM Leaderboard
173
+ - task:
174
+ type: text-generation
175
+ name: Text Generation
176
+ dataset:
177
+ name: HateBR Binary
178
+ type: ruanchaves/hatebr
179
+ split: test
180
+ args:
181
+ num_few_shot: 25
182
+ metrics:
183
+ - type: f1_macro
184
+ value: 27.7
185
+ name: f1-macro
186
+ source:
187
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
188
+ name: Open Portuguese LLM Leaderboard
189
+ - task:
190
+ type: text-generation
191
+ name: Text Generation
192
+ dataset:
193
+ name: PT Hate Speech Binary
194
+ type: hate_speech_portuguese
195
+ split: test
196
+ args:
197
+ num_few_shot: 25
198
+ metrics:
199
+ - type: f1_macro
200
+ value: 29.18
201
+ name: f1-macro
202
+ source:
203
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
204
+ name: Open Portuguese LLM Leaderboard
205
+ - task:
206
+ type: text-generation
207
+ name: Text Generation
208
+ dataset:
209
+ name: tweetSentBR
210
+ type: eduagarcia-temp/tweetsentbr
211
+ split: test
212
+ args:
213
+ num_few_shot: 25
214
+ metrics:
215
+ - type: f1_macro
216
+ value: 43.11
217
+ name: f1-macro
218
+ source:
219
+ url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
220
+ name: Open Portuguese LLM Leaderboard
221
+ - task:
222
+ type: text-generation
223
+ name: Text Generation
224
+ dataset:
225
+ name: ARC-Challenge (PT)
226
+ type: arc_pt
227
+ args:
228
+ num_few_shot: 25
229
+ metrics:
230
+ - type: acc_norm
231
+ value: 32.05
232
+ name: normalized accuracy
233
+ source:
234
+ url: https://github.com/nlp-uoregon/mlmm-evaluation
235
+ name: Evaluation Framework for Multilingual Large Language Models
236
+ - task:
237
+ type: text-generation
238
+ name: Text Generation
239
+ dataset:
240
+ name: HellaSwag (PT)
241
+ type: hellaswag_pt
242
+ args:
243
+ num_few_shot: 10
244
+ metrics:
245
+ - type: acc_norm
246
+ value: 48.28
247
+ name: normalized accuracy
248
+ source:
249
+ url: https://github.com/nlp-uoregon/mlmm-evaluation
250
+ name: Evaluation Framework for Multilingual Large Language Models
251
+ - task:
252
+ type: text-generation
253
+ name: Text Generation
254
+ dataset:
255
+ name: TruthfulQA (PT)
256
+ type: truthfulqa_pt
257
+ args:
258
+ num_few_shot: 0
259
+ metrics:
260
+ - type: mc2
261
+ value: 38.44
262
+ name: bleurt
263
+ source:
264
+ url: https://github.com/nlp-uoregon/mlmm-evaluation
265
+ name: Evaluation Framework for Multilingual Large Language Models
266
+ - task:
267
+ type: text-generation
268
+ name: Text Generation
269
+ dataset:
270
+ name: Alpaca-Eval (PT)
271
+ type: alpaca_eval_pt
272
+ args:
273
+ num_few_shot: 0
274
+ metrics:
275
+ - type: lc_winrate
276
+ value: 13.0
277
+ name: length controlled winrate
278
+ source:
279
+ url: https://github.com/tatsu-lab/alpaca_eval
280
+ name: AlpacaEval
281
+ ---
282
+
283
+ # cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF
284
+ This model was converted to GGUF format from [`TucanoBR/Tucano-2b4-Instruct`](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
285
+ Refer to the [original model card](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) for more details on the model.
286
+
287
+ ## Use with llama.cpp
288
+ Install llama.cpp through brew (works on Mac and Linux)
289
+
290
+ ```bash
291
+ brew install llama.cpp
292
+
293
+ ```
294
+ Invoke the llama.cpp server or the CLI.
295
+
296
+ ### CLI:
297
+ ```bash
298
+ llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
299
+ ```
300
+
301
+ ### Server:
302
+ ```bash
303
+ llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
304
+ ```
305
+
306
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
307
+
308
+ Step 1: Clone llama.cpp from GitHub.
309
+ ```
310
+ git clone https://github.com/ggerganov/llama.cpp
311
+ ```
312
+
313
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
314
+ ```
315
+ cd llama.cpp && LLAMA_CURL=1 make
316
+ ```
317
+
318
+ Step 3: Run inference through the main binary.
319
+ ```
320
+ ./llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
321
+ ```
322
+ or
323
+ ```
324
+ ./llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048
325
+ ```