license: bigscience-bloom-rail-1.0
datasets:
- unicamp-dl/mmarco
- rajpurkar/squad
language:
- fr
- en
pipeline_tag: sentence-similarity
Evaluation
To assess the performance of the reranker, we will utilize the "validation" split of the SQuADhttps://huggingface.co/datasets/rajpurkar/squad dataset. We will select the first question from each paragraph, along with the paragraph constituting the excerpt that should be ranked Top-1 for an Oracle modeling. What's intriguing is that the number of themes is limited, and each excerpt from a corresponding theme that does not match the question forms a hard negative (other excerpts outside the theme are simple negatives). Thus, we can construct the following table, with each theme showing the number of excerpts and associated questions:
Theme name | Context number |
---|---|
Normans | 39 |
Computational_complexity_theory | 48 |
Southern_California | 39 |
Sky_(United_Kingdom) | 22 |
Victoria_(Australia) | 25 |
Huguenot | 44 |
Steam_engine | 46 |
Oxygen | 43 |
1973_oil_crisis | 24 |
European_Union_law | 40 |
Amazon_rainforest | 21 |
Ctenophora | 31 |
Fresno,_California | 28 |
Packet_switching | 23 |
Black_Death | 23 |
Geology | 25 |
Pharmacy | 26 |
Civil_disobedience | 26 |
Construction | 22 |
Private_school | 26 |
Harvard_University | 30 |
Jacksonville,_Florida | 21 |
Economic_inequality | 44 |
University_of_Chicago | 37 |
Yuan_dynasty | 47 |
Immune_system | 49 |
Intergovernmental_Panel_on_Climate_Change | 24 |
Prime_number | 31 |
Rhine | 44 |
Scottish_Parliament | 39 |
Islamism | 39 |
Imperialism | 39 |
Warsaw | 49 |
French_and_Indian_War | 46 |
Force | 44 |
The evaluation corpus consists of 1204 pairs of question/context to be ranked.
Initially, the evaluation scores will be calculated in cases where both the query and the context are in the same language (French/French).
Model (French/French) | Top-mean | Top-std | Top-1 (%) | Top-10 (%) | Top-100 (%) | MRR (x100) | mean score Top | std score Top |
---|---|---|---|---|---|---|---|---|
BM25 | 14.47 | 92.19 | 69.77 | 92.03 | 98.09 | 77.74 | NA | NA |
CamemBERT | 5.72 | 36.88 | 69.35 | 95.51 | 98.92 | 79.51 | 0.83 | 0.37 |
DistilCamemBERT | 5.54 | 25.90 | 66.11 | 92.77 | 99.17 | 76.00 | 0.80 | 0.39 |
mMiniLMv2-L12 | 4.43 | 30.27 | 71.51 | 95.68 | 99.42 | 80.17 | 0.78 | 0.38 |
RoBERTa (multilingual) | 15.13 | 60.39 | 57.23 | 83.87 | 96.18 | 66.21 | 0.53 | 0.11 |
cmarkea/bloomz-560m-reranking | 1.49 | 2.58 | 83.55 | 99.17 | 100 | 89.98 | 0.93 | 0.15 |
cmarkea/bloomz-3b-reranking | 1.22 | 1.06 | 89.37 | 99.75 | 100 | 93.79 | 0.94 | 0.10 |
Next, we evaluate the model in a cross-language context, with queries in English and contexts in French.
Model (French/English) | Top-mean | Top-std | Top-1 (%) | Top-10 (%) | Top-100 (%) | MRR (x100) | mean score Top | std score Top |
---|---|---|---|---|---|---|---|---|
BM25 | 288.04 | 371.46 | 21.93 | 41.93 | 55.15 | 28.41 | NA | NA |
CamemBERT | 12.20 | 61.39 | 59.55 | 89.71 | 97.42 | 70.38 | 0.65 | 0.47 |
DistilCamemBERT | 40.97 | 104.78 | 25.66 | 64.78 | 88.62 | 38.83 | 0.53 | 0.49 |
mMiniLMv2-L12 | 6.91 | 32.16 | 59.88 | 89.95 | 99.09 | 70.39 | 0.61 | 0.46 |
RoBERTa (multilingual) | 79.32 | 153.62 | 27.91 | 49.50 | 78.16 | 35.41 | 0.40 | 0.12 |
cmarkea/bloomz-560m-reranking | 1.51 | 1.92 | 81.89 | 99.09 | 100 | 88.64 | 0.92 | 0.15 |
cmarkea/bloomz-3b-reranking | 1.22 | 0.98 | 89.20 | 99.84 | 100 | 93.63 | 0.94 | 0.10 |
As observed, the cross-language context does not significantly impact the behavior of our models. If the model is used in a reranking context along with filtering of the Top-K results from a search, a threshold of 0.8 could be applied to filter the contexts outputted by the retriever, thereby reducing noise issues present in the contexts for RAG-type applications.
Model (French/French) | Top-mean | Top-std | Top-1 (%) | Top-10 (%) | Top-100 (%) | MRR (x100) | mean score Top | std score Top |
---|---|---|---|---|---|---|---|---|
BM25 | 14.47 | 92.19 | 69.77 | 92.03 | 98.09 | 77.74 | NA | NA |
CamemBERT | 5.72 | 36.88 | 69.35 | 95.51 | 98.92 | 79.51 | 0.83 | 0.37 |
DistilCamemBERT | 5.54 | 25.90 | 66.11 | 92.77 | 99.17 | 76.00 | 0.80 | 0.39 |
mMiniLMv2-L12 | 4.43 | 30.27 | 71.51 | 95.68 | 99.42 | 80.17 | 0.78 | 0.38 |
RoBERTa (multilingual) | 15.13 | 60.39 | 57.23 | 83.87 | 96.18 | 66.21 | 0.53 | 0.11 |
cmarkea/bloomz-560m-reranking | 1.49 | 2.58 | 83.55 | 99.17 | 100 | 89.98 | 0.93 | 0.15 |
cmarkea/bloomz-3b-reranking | 1.22 | 1.06 | 89.37 | 99.75 | 100 | 93.79 | 0.94 | 0.10 |
Model (French/English) | Top-mean | Top-std | Top-1 (%) | Top-10 (%) | Top-100 (%) | MRR (x100) | mean score Top | std score Top |
---|---|---|---|---|---|---|---|---|
BM25 | 288.04 | 371.46 | 21.93 | 41.93 | 55.15 | 28.41 | NA | NA |
CamemBERT | 12.20 | 61.39 | 59.55 | 89.71 | 97.42 | 70.38 | 0.65 | 0.47 |
DistilCamemBERT | 40.97 | 104.78 | 25.66 | 64.78 | 88.62 | 38.83 | 0.53 | 0.49 |
mMiniLMv2-L12 | 6.91 | 32.16 | 59.88 | 89.95 | 99.09 | 70.39 | 0.61 | 0.46 |
RoBERTa (multilingual) | 79.32 | 153.62 | 27.91 | 49.50 | 78.16 | 35.41 | 0.40 | 0.12 |
cmarkea/bloomz-560m-reranking | 1.51 | 1.92 | 81.89 | 99.09 | 100 | 88.64 | 0.92 | 0.15 |
cmarkea/bloomz-3b-reranking | 1.22 | 0.98 | 89.20 | 99.84 | 100 | 93.63 | 0.94 | 0.10 |