Yi-9Bx2-MOE / README.md
cloudyu's picture
Update README.md
0da3ad2 verified
|
raw
history blame
1.8 kB
---
license: apache-2.0
---
# Mixtral MOE 2x7B
MoE of the following models :
* [byroneverson/Yi-1.5-9B-Chat-16K-abliterated](https://huggingface.co/byroneverson/Yi-1.5-9B-Chat-16K-abliterated)
* [BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B](https://huggingface.co/BAAI/Infinity-Instruct-3M-0625-Yi-1.5-9B)
* metric not ready
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Yi-9Bx2-MOE"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Yi-9Bx2-MOE"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```