rickettswa's picture
Update README.md
19bd3e7 verified
metadata
base_model: bert-base-cased
model-index:
  - name: bert-base-cased-ner-rfb
    results: []
license: apache-2.0
language:
  - en
metrics:
  - accuracy
  - f1
pipeline_tag: token-classification

This model is a fine-tuned version of bert-base-cased on a private dataset.

It achieves the following results on the evaluation set:

  • eval_loss: 1.2720
  • eval_FILL_precision: 0.7627
  • eval_FILL_recall: 0.7759
  • eval_FILL_f1: 0.7692
  • eval_FILL_number: 58
  • eval_ROLE_precision: 0.8125
  • eval_ROLE_recall: 0.8125
  • eval_ROLE_f1: 0.8125
  • eval_ROLE_number: 48
  • eval_overall_precision: 0.7850
  • eval_overall_recall: 0.7925
  • eval_overall_f1: 0.7887
  • eval_overall_accuracy: 0.8289
  • eval_runtime: 1.3592
  • eval_samples_per_second: 44.144
  • eval_steps_per_second: 5.886
  • step: 0

It achieves the following results on the test set:

  • test_FILL_f1: 0.8039
  • test_FILL_number: 46,
  • test_FILL_precision: 0.7321
  • test_FILL_recall: 0.8913
  • test_ROLE_f1: 0.8182
  • test_ROLE_number: 42,
  • test_ROLE_precision: 0.7826
  • test_ROLE_recall: 0.8571
  • test_loss: 0.9132
  • test_overall_accuracy: 0.8791
  • test_overall_f1: 0.8105
  • test_overall_precision: 0.7549
  • test_overall_recall: 0.875
  • test_runtime: 0.9583
  • test_samples_per_second: 63.652
  • test_steps_per_second: 8.348

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 600

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1