|
--- |
|
language: |
|
- ja |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
base_model: cl-nagoya/ruri-pt-small |
|
widget: [] |
|
pipeline_tag: sentence-similarity |
|
license: apache-2.0 |
|
--- |
|
|
|
# Ruri: Japanese General Text Embeddings |
|
|
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
import torch.nn.functional as F |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("cl-nagoya/ruri-small", trust_remote_code=True) |
|
|
|
# Don't forget to add the prefix "クエリ: " for query-side or "文章: " for passage-side texts. |
|
sentences = [ |
|
"クエリ: 瑠璃色はどんな色?", |
|
"文章: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。", |
|
"クエリ: ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?", |
|
"文章: ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。", |
|
] |
|
|
|
embeddings = model.encode(sentences, convert_to_tensor=True) |
|
print(embeddings.size()) |
|
# [4, 768] |
|
|
|
similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2) |
|
print(similarities) |
|
# [[1.0000, 0.9453, 0.6860, 0.7225], |
|
# [0.9453, 1.0000, 0.6852, 0.7005], |
|
# [0.6860, 0.6852, 1.0000, 0.8567], |
|
# [0.7225, 0.7005, 0.8567, 1.0000]] |
|
``` |
|
|
|
## Benchmarks |
|
|
|
### JMTEB |
|
Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB). |
|
|
|
|Model|#Param.|Avg.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification| |
|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |
|
|[cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)|111M|68.56|49.64|82.05|73.47|91.83|51.79|62.57| |
|
|[cl-nagoya/sup-simcse-ja-large](https://huggingface.co/cl-nagoya/sup-simcse-ja-large)|337M|66.51|37.62|83.18|73.73|91.48|50.56|62.51| |
|
|[cl-nagoya/unsup-simcse-ja-base](https://huggingface.co/cl-nagoya/unsup-simcse-ja-base)|111M|65.07|40.23|78.72|73.07|91.16|44.77|62.44| |
|
|[cl-nagoya/unsup-simcse-ja-large](https://huggingface.co/cl-nagoya/unsup-simcse-ja-large)|337M|66.27|40.53|80.56|74.66|90.95|48.41|62.49| |
|
|[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|70.44|59.02|78.71|76.82|91.90|49.78|66.39| |
|
|||||||||| |
|
|[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|64.70|40.12|76.56|72.66|91.63|44.88|62.33| |
|
|[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|69.52|67.27|80.07|67.62|93.03|46.91|62.19| |
|
|[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|70.12|68.21|79.84|69.30|92.85|48.26|62.26| |
|
|[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|71.65|70.98|79.70|72.89|92.96|51.24|62.15| |
|
|||||||||| |
|
|OpenAI/text-embedding-ada-002|-|69.48|64.38|79.02|69.75|93.04|48.30|62.40| |
|
|OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27| |
|
|OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35| |
|
|||||||||| |
|
|[**Ruri-Small**](https://huggingface.co/cl-nagoya/ruri-small) (this model)|68M|71.53|69.41|82.79|76.22|93.00|51.19|62.11| |
|
|[Ruri-Base](https://huggingface.co/cl-nagoya/ruri-base)|111M|71.91|69.82|82.87|75.58|92.91|54.16|62.38| |
|
|[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.31|73.02|83.13|77.43|92.99|51.82|62.29| |
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [cl-nagoya/ruri-pt-small](https://huggingface.co/cl-nagoya/ruri-pt-small) |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 |
|
- **Similarity Function:** Cosine Similarity |
|
- **Language:** Japanese |
|
- **License:** Apache 2.0 |
|
<!-- - **Training Dataset:** Unknown --> |
|
|
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.1+cu118 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
<!-- ## Citation |
|
|
|
### BibTeX |
|
--> |
|
|
|
## License |
|
This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). |
|
|